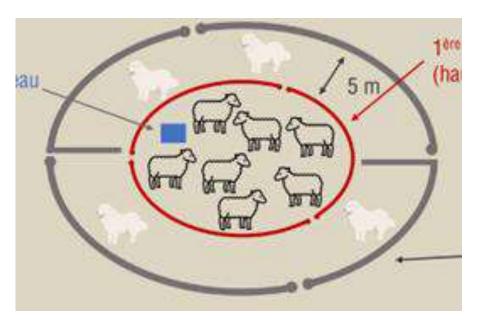


Counting Sheep with Drones: A Feasible Al Solution for Outdoor-Based Farming

A. Lebreton, E. Nicolas, T. Dechaux, L. Helary adrien.lebreton@idele.fr



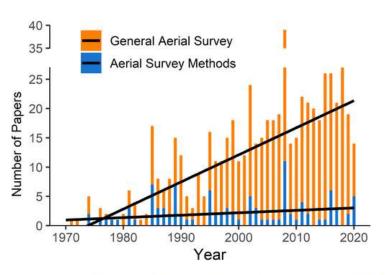
Pastoral sheep farmer have very few efficient tools to count their flock

Manual or RFID counting need a constraint system

Night enclosures to protect the flock from predators are now the norm in France

Have I gathered my entire flock, or have some been left behind, vulnerable to predators for the night?

Lets use drone and computer vision to count them


Use of YOLOv8 without any fine-tuning

The image databases mainly consists of human point-of-view images.

A piece of carrot cake?

The challenge of aerial computer vision AI?

Errors in aerial survey count data: Identifying pitfalls and solutions

Kayla L. Davis 🔀, Emily D. Silverman, Allison L. Sussman, R. Randy Wilson, Elise F. Zipkin

First published: 18 March 2022 | https://doi.org/10.1002/ece3.8733 | Citations: 11

An old challenge in Ecology

vegetation-induced occlusion

Moving animals in large areas to survey

Same challenges but higher accuracy expectations in sheep farming

Objectives

- Establish a usage framework to enhance the robustness of Albased counting
- Develop a computer vision for counting sheep

Establish a usage framework to enhance the robustness of Al-based counting

- Low altitude (5-10m) to be closer to existing data set (human point fo view)
- Top-down or 45-degree oblique camera angle relative to the counting line to reduce occlusion
- Key friendly area and key strategic counting: counting at the gate when the animals are coming back
 - Close to a farmer decision « Do I need to go look for animals in my rangelands tonight? »

Switching from a dynamic drone mapping a wide area to a static drone filming animals passing underneath

Pipeline

Sheep images capture by drone

Sheep detection by computer vision algorithm

Tracking and counting on a video

Pipeline

Sheep images capture by drone

DJI Mavic 3 E

Sheep detection by computer vision algorithm

Tracking and counting

Byte track algorithm

Detection model training: difficulty in finding relevant data

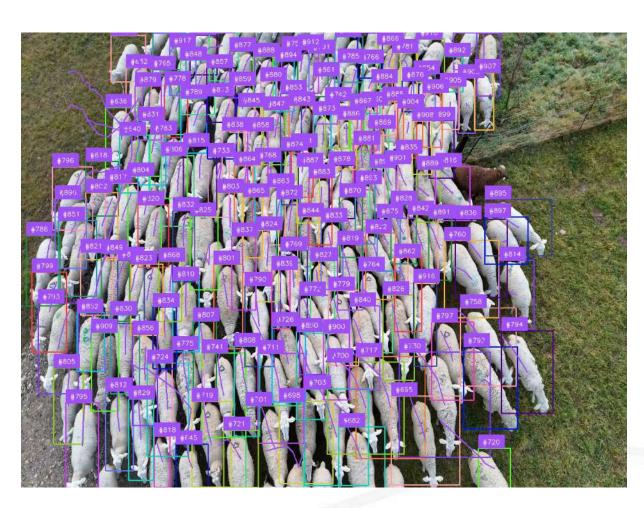
Roboflow universe

Annotated sheep datasets
Only white sheeps
Lack of environmental diversity

ICAERUS 1st dataset (available on Zenodo)

Images and video of sheep from UAV flies
Used Annotated images: 974
Annotated videos: 4 (less than 30 sec, 9 frames/sec)

Our dataset:

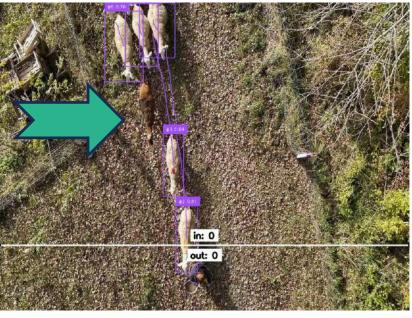

4814 annotated images from Roboflow Universe 4 videos from ICAERUS dataset (639 images)

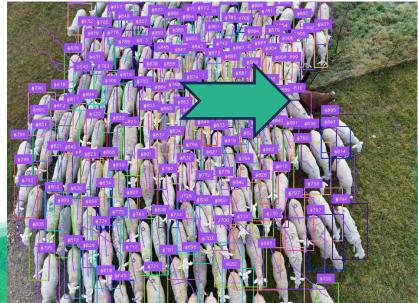
Results

Results

Detection model performance:

mAP: 0.89


Precision: 0.89


Recall: 0.79

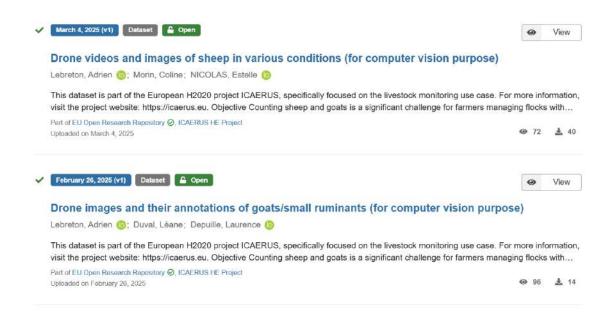
Results

- Tracking failure in scenarios where animals are densely clustered.
 - Other tracking algorithms to test
- Counting performance:
 - 8% of false negatives ==> specially for dark colored sheep

Perspectives

- Small ruminant model (sheep and goats) to improve detection of colored sheep
- Targeted data collection and annotation

Most of the progress are expected from the detection stage. Full of variance training dataset (animals and background colors) are the key for robust detector!


Key take-aways

 Al Computer vision can significantly benefit even the most extensive livestock systems if designed pragmatically

- Delivering robust Al solutions requires:
 - A clearly defined and operational usage framework (which can be constrained if needed)
 - Maximized representation of variance of what can be found in the usage scenarios in the training dataset
 - Synergies and data sharing is the key to collect data variance

A call for data sharing!

Many data already available with and without annotations ICAERUS

ICAERUS Icaerus Use Cases Newsroom Contact Open Calls Platform Academy

Synergies needed to develop and annotate these datasets

Thanks for your attention!

Contact : adrien.lebreton@idele.fr

Reach me on Linkedin

