Pose estimation for behavioural anomaly detection in pigs: comparative analysis of keypoint configuration and neural networks

K. Ivanov^a, Valentina Bonfatti^a, Claudia Kasper^b, Hassan-Roland Nasser^c

- ^a Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, 35020, Legnaro (PD), Italy
- b Animal GenoPhenomics, Agroscope, Posieux, Switzerland
- ^c Digital Production, Agroscope, Posieux, Switzerland

e-mail: kirill.lvanov@studenti.unipd.it

Agroscope

MANUAL SCORING LIMITATIONS

Manual scoring is time-consuming and labour-intensive:

- Limited temporal resolution subtle or rapid events often missed
- Key problems faced by researchers & producers
- How can computer vision help?

HOW CAN COMPUTER VISION HELP?

- Automated, continuous monitoring without human fatigue
- Objective, quantitative metrics for posture and movement
- High throughput: simultaneous tracking of many animals
- Integration with different tools for early anomaly detection
- Can be used in different environments

OBJECTIVE

Keypoint configuration comparison

Evaluate different keypoint configurations for pose estimation

Neural Network Comparison

Evaluate 5 different Neural Networks for pigs tracking

Performance Metrics

Compare trained models by tracking accuracy, computational efficiency, and robustness

PIGS MARKS

 To enhance individual identification on video recordings, pigs were spraymarked weekly during routine weighing procedures, eliminating the need for additional direct handling.

MAP OF THE PEN

VIDEO ACQUISITION

Recording Parameters

Surveillance cameras installed 2.5m above daily recording from 7:00 AM to 8:00 PM, 15 fps, 320×240 pixels resolution, 15-minute AVI videos.

KEYPOINT CONFIGURATIONS

STD

EAR3P

BODY5P

EYES2P

TAIL2P

FLOWCHART

Keypoint configuration comparison

Neural network comparison

TRAINING LOSS COMPARISON

TEMPORAL CONSISTENCY

Bodypart	Dropout, %	Velocity, px/frame	Jerk, px/frame ²
Snout	46.0%	18.83	0.000054
Head	18.5%	24.25	0.000074
Left ear	28.8%	23.57	0.000051
Right ear	32.9%	23.33	0.000085
Body1	18.3%	24.34	0.000053
Body2	25.9%	25.95	0.000048
Body3	31.6%	24.94	0.000033
Body4	27.4%	25.33	0.000083
Body5	29.0%	21.21	0.000028
Tail	31.8%	16.97	0.000054

OCCUPANCY HEATMAP

2D occupancy heatmap showing areas of frequent pig activity, with brightest regions indicating highest concentration.

- Left side of pen showed highest concentration of activity
- Distinct vertical yellow strip suggests presence of feeding station

TAIL-SNOUT INTERACTION HEATMAP

Methodological limitations:

- Proximity ≠ intentional interaction; co-occupancy may reflect pen design
- Fixed pixel thresholds ignore body size and camera perspective variability

CONCLUSION

Pose estimation is effective for tracking major anatomical landmarks in pigs under variable lighting and occlusion

Snout and ear key-points remain challenging under heavy occlusion

Lightweight architectures enable near - real-time inference even on limited-resource hardware

Model choice should align with farm needs

Future enhancements: integrate temporal models (LSTM/TCN) and multimodal inputs (depth, audio) to capture complex interaction dynamics

ACKNOWLEDGMENT

- Swiss Association for Animal Sciences (SAAS) fund for the promotion of young scientists
- Agroscope, Posieux
- University of Padova, Department of Comparative Biomedicine and Food Science
- Department of Agronomy, Food, Natural resources, Animals and Environment
- Cost Action 22112 European Network on Livestock Phenomics (EU-LI-PHE) Short Term Scientific Mission (STSM) Grant

SCHWEIZERISCHE VEREINIGUNG FÜR TIERWISSENSCHAFTEN Association Suisse pour les Sciences Animales Swiss Association for Animal Sciences

Agroscope

Thanks!