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Context and motivation

Birth losses rates can reach 10%

Manual monitoring is labor-intensive and
often impractical

Traditional monitoring

Continuous, non-invasive monitoring

Smart Technology

Enable timely intervention

Wearable accelerometers are a convenient solution



System architecture

Key components:

* Wearable Collars:
Equipped with inertial sensors and thermometers

* Cameras:
Provide visual data for monitoring and verification

* Gateway:
Gathers data, implements data
classification and triggers alarms
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Dataset Overview

* 62 ewes

o 27 unassisted births, 35 assisted births,
4 inverted collars.

 Ewes lambed between one to three
lambs

 All births documented through sensor
data and video recordings (12 hours
each).

* Frequency of 20 Hz




Dataset Processing

* |dentification of time of birth and labeling of the data.

Single-Second model:

Real Time until Parturition
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Model Development

Temporal Processing:
- Single-Second
- Sequence (Window-Based)

Computational
Complexity:

- Light

- Non-Light

Models Tested:
- Decision Tree
- Random Forrest
- Extra Forrest

- Bagging

Prediction method

Sequence-Based
n seconds of data for each prediction

Single-Second
1 second of data for each prediction

Mon-light models
Mo restrictions

Light models
with restrictions

Mon-light models
Mo restrictions

Light models
with restrictions

! ! ! !

Random Forrest Random Forrest Bagging Exfra Trees
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Results: Single-Second Model (Light)

Model Accuracy | Precision | Recall | Fl-score | MCC
DecisionTreeClassifier (.30 .31 (.30 (.30 (.24
RandomPForestClassifier 0.47 0.47 0.47 ().46 0.42
ExtraTreesClassifier (.46 (.46 ().46 ().46 (.42
Bagging 0.17 0.17 0.17 0.17 (.10

Best Performing model: Random Forrest Classifier
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Results: Sequence-Based Model (Non-Light)

Model ACEUI'HC}’ Precision | Recall | F1 Score | MCC 1 M 302% 2.20% 1.06% 0.66% 0.60% 0.50% 0.46% 0.44% 0.49% 0.26% 0.23% 0.58%
DecisionTreeClassifier 0.51 0.51 0.51 0.51 0.47
RandomForestClassifier 0.77 0.77 0.77 0.77 0.75 0+ [FWIEA 0.26% 0.05% 0.03% 0.06% 0.00% 0.00% 0.00% 0.02% 0.00% 0.01% 0.00%
ExtraTreesClassilier (.81 (.81 (.81 0.81 0.79 142.14% 3.01%3.64% 1.31% 1.06% 0.95% 0.36% 0.46% 0.50% 0.42% 0.39% 0.80%
Bagging 0.65 0.65 0.65 0.65 0.62

2 40.72% 0.40% 4.32% EUNEEY 3.73% 1.35% 0.83% 1.05% 0.33% 0.45% 0.44% 0.71% 0.46%

3 40.64% 0.68% 1.66% 4410%4.03% 1.28% 1.20% 0.48% 0.66% 0.54% 0.60% 0.61%
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Detector architecture

MQTT Broker: Handles communication

between com ponents
Data Publisher

Subscriber

* Data Publisher: Functions as the [ Data Colloction ] P, MQTTbroker <2 Req) Time Visualizer
data acquisition interface

lSubsu:rlben'Puhllsher

* Model Classifier: Processes sensor
data using trained predictive models

Lambing Detector

{ ML classifier J ™ Alarm generator

* Filter: Applies post-processing to l [
enhance prediction stability

‘ Filter ‘

e Alarm Generator and Real-Time
Visualizer



Real Time until Parturition

Prediction Mappin

Sequence-based model:

Real Time Until Parturition Evolution
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Temporal Filtering: Enhancing Predictive
Stability

Decision Criteria:

1. Most frequent prediction within window selected
2. Prediction must appear in 240% of window observations

3. If no prediction meets 40% threshold - Defaults to Class 11 (furthest from parturition)
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Results: Temporal Filtering

Predicted Time until Parturition

Model Accuracy | Precision | Recall | Fl-score | MCC
RandomForest (light) 0.34 0.68 0.34 0.36 0.31
ExtraTrees (non-light) 0.71 0.78 0.71 0.72 0.70

Predicted Time Until Parturition Evolution (light model)
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Extended Validation

*Scattered pattern
persists in periods far
from parturition

*Organized descent
pattern appears
exclusively near birth

Predicted time until parturition

Predicted time until parturition

Plot 1: 2024-05-02 23:56:56 to 2024-05-03 11:57:02
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Plot 4: 2024-05-04 11:57:14 to 2024-05-04 23:57:20
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Predicted time until parturition

Predicted time until parturition

Plot 2: 2024-05-03 11:57:02 to 2024-05-03 23:57:08
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Plot 5: 2024-05-04 23:57:20 to 2024-05-05 11:57:26
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Predicted time until parturition

Predicted time until parturition

Plot 3: 2024-05-03 23:57:08 to 2024-05-04 11:57:14
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Plot 6: 2024-05-05 11:57:26 to 2024-05-05 23:57:32
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Enhanced Filtering: State Memory

Transition Constraints:

. Plot 1: 2024-05-02 23:58:55 to 2024-05-03 11:58:41 Plot 2: 2024-05-03 11:58:41 to 2024-05-03 23:58:27 Plot 3: 2024-05-03 23:58:27 to 2024-05-04 11:58:13
In Numerlc StateS: s 12 L X X 1l 1/ | ] s o I N [ N S s 27 g | [ [ 1 N |
*Can maintain current position f: — = T- g e i = =
Can transition to next lower = 36 hour £ 24 hour A 12 hour
value o g o B o
*Can revert to Class 11 while
o Plot 4: 2024-05-04 11:58:13 to 2024-05-04 23:58:00 Plot 5: 2024-05-04 23:58:00 to 2024-05-05 11:57:46 Plot 6: 2024-05-05 11:57:46 to 2024-05-05 23:57:32
preserving current state
From Class 11: T L e L
¢ = - 12 hour t . 24 hour
*Can only move to Class 10 : -_ 3 0 e
*Can return to previously 30 N N A ) Y O O N By
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Conclusions

s Key Achievements:

e Successfully demonstrated machine learning-based parturition
prediction across the 4 different approaches

s Significant Innovations:

e Early detection of parturition events

Current Study Limitations:

e Dataset Constraints
e Complexity of Assisted Births

l
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Limitations & Future Work

Promising Future

Current Study
T Research
Limitations:
Avenues:
A S
Dataset Temporal
Constraints segmentation
Different machine
Complexity of learning
Assisted Births approaches and

configurations



Thank you

Pedro Gongalves — pasg@ua.pt
Rosario Marques — rosario.margues@iniav.pt
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