Real-Time Detection of Parturition Onset in Small Ruminants Using Wearable Accelerometers and Machine Learning

P. Gonçalves, A. T. Belo, M. R. Marques, M. Antunes, S. Nyamuryekung'e, G. H. Jorgensen

AI4AS 2025 Zurich, 6 June 2025

Context and motivation

Traditional monitoring

- Birth losses rates can reach 10%
- Manual monitoring is labor-intensive and often impractical

Smart Technology

- Continuous, non-invasive monitoring
- Enable timely intervention
- · Wearable accelerometers are a convenient solution

System architecture

Key components:

- **Wearable Collars:** Equipped with inertial sensors and thermometers
- **Cameras:** Provide visual data for monitoring and verification
- **Gateway:** Gathers data, implements data classification and triggers alarms

Dataset Overview

- 62 ewes
- 27 unassisted births, 35 assisted births, 4 inverted collars.
- Ewes lambed between one to three lambs
- All births documented through sensor data and video recordings (12 hours each).
- Frequency of 20 Hz

Dataset Processing

Identification of time of birth and labeling of the data.

Single-Second model:

Model Development

Temporal Processing:

- Single-Second
- Sequence (Window-Based)

Computational Complexity:

- Light
- Non-Light

Models Tested:

- Decision Tree
- Random Forrest
- Extra Forrest
- Bagging

Results: Single-Second Model (Light)

Model	Accuracy	Precision	Recall	F1-score	MCC
DecisionTreeClassifier	0.30	0.31	0.30	0.30	0.24
RandomForestClassifier	0.47	0.47	0.47	0.46	0.42
ExtraTreesClassifier	0.46	0.46	0.46	0.46	0.42
Bagging	0.17	0.17	0.17	0.17	0.10

Best Performing model: Random Forrest Classifier Size (KB): 5386

Results: Sequence-Based Model (Non-Light)

Model	Accuracy	Precision	Recall	F1 Score	MCC
DecisionTreeClassifier	0.51	0.51	0.51	0.51	0.47
RandomForestClassifier	0.77	0.77	0.77	0.77	0.75
ExtraTreesClassifier	0.81	0.81	0.81	0.81	0.79
Bagging	0.65	0.65	0.65	0.65	0.62

Best Performing model: Extra Trees Classifier

Size (KB): 744698

Detector architecture

- MQTT Broker: Handles communication between components
- Data Publisher: Functions as the data acquisition interface
- Model Classifier: Processes sensor data using trained predictive models
- Filter: Applies post-processing to enhance prediction stability
- Alarm Generator and Real-Time
 Visualizer

Prediction Mapping Over Time

Sequence-based model:

Temporal Filtering: Enhancing Predictive Stability

Decision Criteria:

- 1. Most frequent prediction within window selected
- 2. Prediction must appear in ≥40% of window observations
- 3. If no prediction meets 40% threshold Defaults to Class 11 (furthest from parturition)

Results: Temporal Filtering

Model	Accuracy	Precision	Recall	F1-score	MCC
RandomForest (light)	0.34	0.68	0.34	0.36	0.31
ExtraTrees (non-light)	0.71	0.78	0.71	0.72	0.70

Extended Validation

- •Scattered pattern persists in periods far from parturition
- Organized descent pattern appears exclusively near birth

Enhanced Filtering: State Memory

Transition Constraints:

In Numeric States:

- Can maintain current position
- •Can transition to next lower value
- •Can revert to Class 11 while preserving current state

From Class 11:

- •Can only move to Class 10
- •Can return to previously recorded numeric state

Conclusions

Key Achievements:

 Successfully demonstrated machine learning-based parturition prediction across the 4 different approaches

Significant Innovations:

Early detection of parturition events

Current Study Limitations:

- Dataset Constraints
- Complexity of Assisted Births

Limitations & Future Work

Current Study Limitations:

Dataset Constraints

Complexity of Assisted Births

Promising Future
Research
Avenues:

Temporal segmentation

Different machine learning approaches and configurations

Thank you

Pedro Gonçalves – <u>pasg@ua.pt</u> Rosário Marques – <u>rosario.marques@iniav.pt</u>

