

AI-DRIVEN OPTIMIZATION OF VETERINARY CARE SERVICES

Valentina M. Dolin¹, Gudrun Kinz^{1,2}, Martina Jezik¹, and Peter M. Roth^{1,*}

¹University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210 Wien, Austria

² BOKU University, Konrad-Lorenz-Straße 20/1, 3034 Tulln an der Donau, Austria

*Corresponding author: peter.m.roth@vetmeduni.ac.at

Motivation

- Improvement /optimization of veterinary care services
 - In particular, with focus on Alpine countries and on livestock/cattle
- Solutions:
 - Assignment of a farm /several farms to the optimal veterinarian's practice / the respective optimal practices: R/Shiny application vetfind
 - Calculation of veterinary care regions: Assignment of subregions to the respective optimal practices: in R/Shiny application vetcluster
- Basis for calculation:
 - Road distance
 - Duration (results can differ from results for road distance)

Application vetfind

- Goal: find optimal available veterinarian's practice for a farm
- Output: practice ID, a map showing in particular the route, and further information
- Measure of optimality in current protoype(s):
 - Optimal available practice for a farm: minimal road distance
- Routing, road distances and road durations via OSRM:
 - R package osrm (interface between R and OSRM API)
 - osrm.profile=,,car"

R shiny application, packages shiny, sp, sf, tidyverse, geosphere, osrm, leaflet, elevatr

Remark: practice and farm locations are random samples, names are placeholders vetmeduni

HÖHE: Höhe Start (Praxis), Höhe Ziel (Patient)

ID	elevation_doctor	elevation_doc
15	681.00	meters

farmer_elev farmer_elev_units

Routing from optimal practice to farm: shortest path on Earth (topographic map)

Data: (c) OpenStreetMap contributors, ODbL 1.0 - http://www.openstreetmap.org/copyright Routing: OSRM - http://project-osrm.org/

All locations are random samples

Routing from optimal practice to farm: shortest path on Earth with route on the road (topographic map)

Data: (c) OpenStreetMap contributors, ODbL 1.0 - http://www.openstreetmap.org/copyright Routing: OSRM - http://project-osrm.org/

All locations are random samples

All locations are random samples in this example.

- Weighted bipartite graph
- Graph clustering
- Example for 2 practices, 5 farms (R/igraph)

All locations are random samples in this example.

- Weighted bipartite graph
- Graph clustering
- Example for 2 practices, 5 farms (R/igraph)

Vertices representing practices

All locations are random samples in this example.

- Weighted bipartite graph
- Graph clustering
- Example for 2 practices, 5 farms (R/igraph)

- Vertices representing practices
- Vertices representing farms

All locations are random samples in this example.

- Weighted bipartite graph
- Graph clustering
- Example for 2 practices, 5 farms (R/igraph)
- Vertices representing practices
- Vertices representing farms
- Directed edges

All locations are random samples in this example.

- Weighted bipartite graph
- Graph clustering
- Example for 2 practices, 5 farms (R/igraph)
- Vertices representing practices
- Vertices representing farms
- Directed edges
- Weights on edges (here: road distance (osrm), km, rounded)

osrm copyright information for this example:

Data: (c) OpenStreetMap contributors, ODbL 1.0 - http://www.openstreetmap.org/copyrightRouting: OSRM - http://project-osrm.org/

All locations are random samples in this example.

- Weighted bipartite graph
- Graph clustering
- Example for 2 practices, 5 farms (R/igraph)
- Vertices representing practices
- Vertices representing farms
- Directed edges
- Weights on edges (here: road distance (osrm), km, rounded)
- Next step: For every farm vertex, keep only edge with minimal weight

osrm copyright information for this example:

Data: (c) OpenStreetMap contributors, ODbL 1.0 - http://www.openstreetmap.org/copyrightRouting: OSRM - http://project-osrm.org/

All locations are random samples in this example.

- Weighted bipartite graph
- Graph clustering
- Example for 2 practices, 5 farms (R/igraph)

Result of assignment process:

- Practice 1 optimal for 3 farms
- Practice 2 optimal one for 2 farms

osrm copyright information for this example:

Data: (c) OpenStreetMap contributors, ODbL 1.0 - http://www.openstreetmap.org/copyrightRouting: OSRM - http://project-osrm.org/

Application vetcluster

- Returns veterinary care regions (for a given region)
- Returns map showing veterinary care regions
- Returns ID of the calculated practice for the selected subregion
- Technical solution:
 - Calculation based on road-distance (one distinguished point for each subregion)
 - Find optimal practice for each point and assign subregions according to the assignments
 - R Shiny application: packages shiny, sp, sf, tidyverse, osrm, leaflet

Remark: practice locations are random samples, (sub-)region(s) and points should be viewed as placeholders, names are placeholders

Gemeinde 11 9

Illustration

Yellow region: services by **Praxis 1**

Green region: services by **Praxis 4**

Future work

- Use patient's location as user input
- Use real data (placeholders for privacy and legal issues by now)
- Use real-time data (e.g., changing actual locations of the veterinarians, additional emergengies)
- Use more complex weight function (include, e.g., specialization of veterinarians, topographic data)

THANK YOU FOR YOUR ATTENTION!

GESELLSCHAFT FÜR
FORSCHUNGS
FÖRDERUNG
FTI-STRATEGIE NIEDERÖSTERREICH 2027

FTI-STRATEGIE

2021-2027

This work was supported by Land Niederösterreich through the projects **HOLTSTEIN** (Holistischer Ansatz zur nachhaltigen Sicherstellung der Nutztiergesundheit in Niederösterreich) and **ROBOKIZ** (Robust Automatic Analysis of Drone Image in Plant Breeding Using Artificial Intelligence).

WISSENSCHAFT • FORSCHUNG NIEDERÖSTERREICH