

Bridging AI and Clinical Expertise: A Neuro-Symbolic System for Emergency Veterinary Triage Analysis

L. Bukowski, L. Wizenty, M. G. Doherr,

Artificial Intelligence 4 Animal Science EAAP conference, Zurich June 4th – 6th, 2025

Background

- No definition of Veterinary Emergency

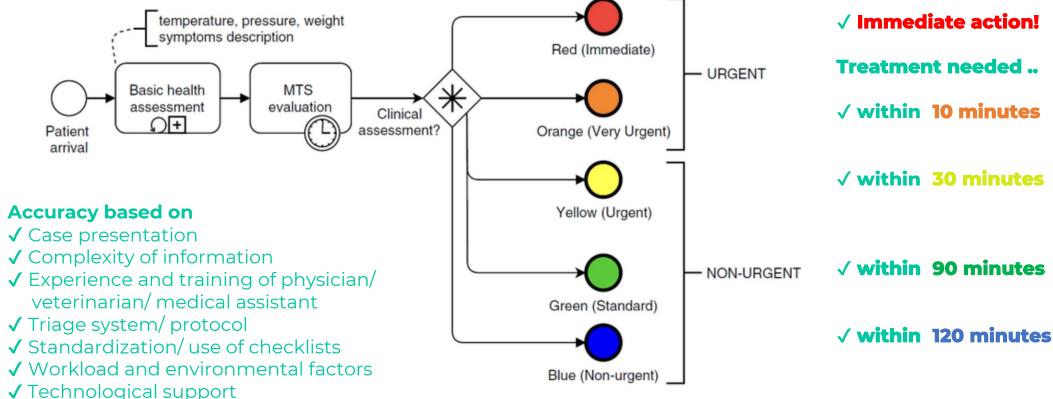
Few studies and publications worldwide, leaving a gap in monitoring and detection of critical cases

- Limited number of animals included in epidemiological studies
- Increasing workload in human and veterinary emergency departments

Use of triage-system in veterinary medicine less common, well-defined triage systems not available

- Guidelines for standardized veterinary triage list prioritization
- Human studies provide extensive knowledge to facilitate initial treatment and diagnosis
- Recognize seriously ill patients and prioritize the over less ill patients by using triage-systems
- Use of Al-systems helpful for case analysis regarding triage classification

Question: Can an Al system be trained for case analysis and triage classification?



Manchester Triage System (MTS)

- used in human medicine -

- ✓ Evaluation (outcome analysis)

Dataset

- ✓ Patients presented in emergency service in small animal practice
- √ 12-month period (2021)
- √ 4.579 cases of dogs and cats
- ✓ Date and time of presentation
- ✓ Patient profile
- √ Clinical problem & medical history
- √ Diagnostics and received medical care

- √ Classification into categories:
 - 1) REASON FOR PRESENTATION
 - 2) VETERINARY CARE
- ✓ Application of 5-point-MTS retrospectively

Manually done by veterinarian experienced in emergency care

Classification of cases

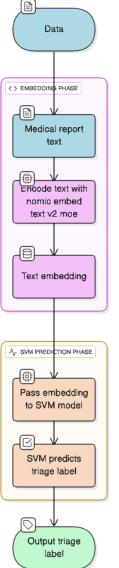
REASON FOR PRESENTATION

- 1. No medical problem
- 2. Gastrointestinal tract
- 3. Respiratory tract
- 4. Poisoning
- 5. Ear-, nose-, throat-diseases including eyes
- 6. Trauma and shock including bleeding disorders
- 7. Kidney and urinary tract diseases
- 8. Seizures
- 9. Musculoskeletal system including lameness
- 10. Cardiovascular diseases
- 11. Metabolic diseases and allergies
- 12. Euthanasia
- 13. Other

MEDICAL CARE

- 1. Delivery and sale
- 2. Refusal of veterinary advice
- **3. Symptomatic therapy including medication**
- 4. Diagnostics
- 5. Outpatient infusion therapy
- 6. Inpatient admission
- 7. Referral to veterinary clinic
- 8. Euthanasia or death
- 9. Wound care or surgery
- 10. Home visit

Machine learning


- **√** 3 different machine learning models:
 - SVM (Support Vector Machine)
 - MLP (Multilayer Perceptron)
 - BERT (Encoder-only Transformer)
- **√ Input:**
 - textual data (concatenation):

```
jahreszeit
                         (season)
tag
                         (day)
dienstzeit
                         (shift time)
tageszeit
                         (time of day)
tier art
                         (animal species)
tier rasse
                         (animal breed)
tier_geschlecht
                         (animal sex)
tier_altersgruppe
                         (animal age group)
vorstellung_grund
                         (reason for presentation)
```


Machine learning: SVM

embedding length = 768

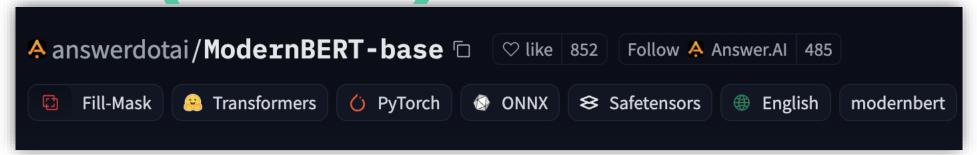
			precision	recall	f1-score
blue yellow green orange red	-	blau gelb grün orange rot	1.00 0.74 0.62 0.83 0.89	0.27 0.40 0.96 0.21 0.56	0.42 0.52 0.75 0.34 0.69
,	ma	accuracy acro avg ated avg	0.82 0.73	0.48 0.67	0.67 0.54 0.63

Machine learning: MLP


```
•••
                             MLP_triage
# Feature extractor
        self.feature_extractor = nn.Sequential(
           nn.Linear(input_dim, hidden_dim),
           nn.BatchNorm1d(hidden_dim),
           nn.ReLU(),
           nn.Dropout(0.3),
           nn.Linear(hidden_dim, hidden_dim // 2),
           nn.BatchNorm1d(hidden_dim // 2),
           nn.ReLU(),
           nn.Dropout(0.3),
           nn.Linear(hidden_dim // 2, hidden_dim // 4),
           nn.BatchNorm1d(hidden_dim // 4),
           nn.ReLU(),
           nn.Dropout(0.2)
       # Classifier
       self.classifier = nn.Linear(hidden_dim // 4, num_classes)
```

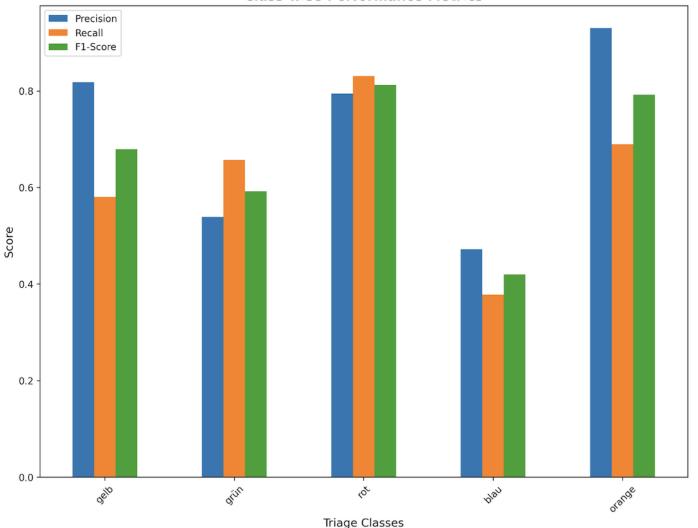
Classificatio	n Report:		
	precision	recall	f1-score
blau	0.40	0.61	0.48
gelb	0.56	0.46	0.50
grün	0.78	0.67	0.72
orange	0.27	0.47	0.34
rot	0.72	0.72	0.72
accuracy			0.60
macro avg	0.54	0.59	0.55
weighted avg	0.64	0.60	0.62

Machine learning: MLP

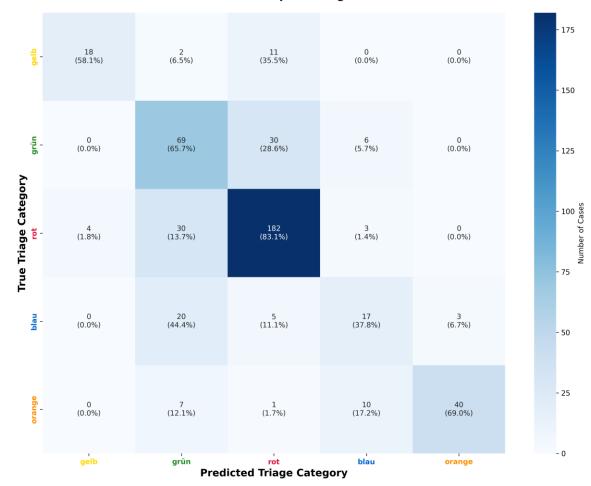


Base model (encoder):

Detailed Classification Report:



	precision	recall	f1–score	support	
gelb	0.8182	0.5806	0.6792	31	
grün	0.5391	0.6571	0.5923	105	
rot	0.7948	0.8311	0.8125	219	
blau	0.4722	0.3778	0.4198	45	
orange	0.9302	0.6897	0.7921	58	
			0 7110	450	
accuracy			0.7118	458	
macro avg	0.7109	0.6273	0.6592	458	
weighted avg	0.7232	0.7118	0.7118	458	



Veterinary Triage Confusion Matrix (Numbers show count and percentage of true class)

FUTURE RESEARCH:

- Experiments with different BERT base models (PetBERT).
- · Use the support of neuro-symbolic engine.
- · Mapping to another triage system (only 3 classes?).
- · Adding a synthetic data to the dataset.

Thank You!

