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3Milk transformation assessment

Direct 
measurements

How good?

Without investments?

Supervised 
learning

Models
= “equations”

Inference

New milk MIR 
database

Estimation of
How good…

Existing and past 
projects

From a few individuals to 
population level



4Context: Holicow project

Holicow research Interreg 
project

➢ 41 million records

➢ FT-MIR spectra

➢ Milk recording related data

➢ Gathering partners developed

equations

➢ Pattern recognition

o Clustering algorithms

o Case study in the next presentation

MIR DB
1060 cols spectra + 22 cols

Prediction DB

>365 equations

I. Alexakis
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Cluster 1

Clustering 
result?

Transnational database

Cluster 3

Cluster 4 Cluster 5

Cluster 2

Cluster 6

Clustering: how it looks like in the end

Cluster = Group of 
similar observations

Clusters Meaning

Cluster i Meaning i

… …

6 clusters related to 
transformation



6Back to supervised learning

Select sub-database

Selected DB 
w/ predictions

Traditional 
supervised learning

PLS

RF

GLMnet

Models 

Probability to 
belong to clustersMIR DB

Predicted DB

>365 equations



7Back to supervised learning: the problems

Select sub-database

Selected DB 
w/ predictions

Traditional 
supervised learning

PLS

RF

GLMnet

Models 

Probability to 
belong to clustersMIR DB

Predicted DB

>365 equations

Problems …



8Back to supervised learning: problem of data

Select sub-database

Selected DB 
w/ predictions

Traditional 
supervised learning

PLS

RF

GLMnet

Models 

Probability to 
belong to clustersMIR DB

Predicted DB

>365 equations

Problems …

➢ 41 million records

o Loads of dimensions (spectra

=> 1060 points)

o Loading constraints (RAM)

o Sampling representativity

o Database structuration per

MRO (>40)

o Algorithm capabilities



9Back to supervised learning: problem of stacking layers

Select sub-database

Selected DB 
w/ predictions

Traditional 
supervised learning

PLS

RF

GLMnet

Models 

Probability to 
belong to clustersMIR DB

Predicted DB

>365 equations

Problems …

➢ 41 million records

➢ Indirect predictions

o Time

o Additional processing 

constraints (RAM, CPU load)

o Cumulation uncertainty

o Proprietary equations



10Back to supervised learning: problem of algorithms and infrastructure

Select sub-database

Selected DB 
w/ predictions

Traditional 
supervised learning

PLS

RF

GLMnet

Models 

Probability to 
belong to clustersMIR DB

Predicted DB

>365 equations

Problems …

➢ 41 million records

➢ Indirect predictions

➢ Model inherent limitations

o RAM consumption

o Speed

o Size on disk

o Transferability of learned 

knowledge?



11Back to supervised learning: bypass the problem

Select sub-database

Selected DB 
w/ predictions

Models 

Probability to 
belong to clustersMIR DB

>365 equations

Problems …

➢ 41 million records

➢ Indirect predictions

➢ Model inherent limitations

➢ Innovation

o Bypass

o Transfer knowledge

Transferable 
modelling



12Bypass: the concept

Deep neural 
network

O
U
T

IN

➢ FT-MIR

➢ Management 

information

➢ Cluster belonging probability

Iterative architecture search

➢ N nodes, N layers, connectivity, activation function

➢ Method: Validation RMSE minimisation



13Bypass: under the hood

Deep neural 
network

O
U
T

Pre-processed

IN

(484 cols)

➢ 1st and 2nd derivative

➢ Dummy breeds

➢ DIM, lactation number, MY, Time

➢ Cluster belonging probability

➢ Stack of dense layers (16)

o Hidden nodes 484, 323, 323, 242, 242, 

161, 161, 121, 121, 48, 48, 24, 24, 12, 12, 1

o Batch normalisation

o Activation: “selu”



14Bypass and transfer learning implication

Any
database

Probability to 
belong to clusters

Deep neural networks

Advantages

➢ Lightweight: <1 Mo RAM

➢ Predict: belonging probability

o Fine tuning of thresholds

➢ Learn from the whole database

➢ Learn iteratively (transfer learning)

=> Can learn on new datasets

MIR + milk 
recording 

information



15Performances

Validation R²

Noise and imperfections:

➢ Breeds

➢ Data sources (>40 MROs)

➢ Modelled cluster with originally 

high confusion

➢ Y = modelled probability based 

on indirect predictions

(cumulation of errors?)



16Take Home Message

Contact: Charles.Nickmilder@uliege.be
Holicow: https://holicow.nweurope.eu/

Final Note

➢ Transferring research models is key to widespread adoption

➢ Transferable models exist

➢ WIP: on better integration of temporal, breed and management data

➢ Presented clusters: transformation ability

o WIP: fertility, well-being, environment, heat stress, production

Thank you

mailto:Charles.Nickmilder@uliege.be
https://holicow.nweurope.eu/
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