

Automated detection of asymmetrical udders in dairy goats using deep learning-based imaging

Kacper Libera*, Maxime Pals, Yvette de Geus, Gerrit Koop, Lidwien A.M. Smit, Alex Bossers

*Kacper Libera, DVM, Resident of ECVPH (Food Safety)

3rd year, PhD Candidate at
Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University
email: k.b.libera@uu.nl

Artificial Intelligence 4 Animal Science, Zurich, 6.06.2025

netherlands centre for one health

Background Goat milk production

- There are almost 0.5 million of dairy goats in the Netherlands (1)
- Average herd size is around 1000 goats per farm (2)
- Excellent properties of goat milk (3)

Background Milking procedure

- Goats are milked twice (two types of milking parlours)
- Done by farmer/farm worker (usually no pre-milking or teat hygiene)
- Possibility to perform health check-ups
- Need to be careful (mastitis/drug withdrawal period)

Background

Udder inflammation in goats

- Udder inflammation (mastitis) in dairy goats is a complex health problem
- Clinical/subclinical form (20-50% of the herd is affected (5, 6)), bacterial etiology
- Quality/quantity of the milk is impaired
- Animal welfare/health issue + risk for other animals (+ people)
- Udder asymmetry is a phenomenon described in goats can facilitate early diagnosis (6)

RIGHT ASYMMETRY

Asymmetry considered if the disparity between udder halves at least 40:60

Background

Udder inflammation in goats

Aim of the study

To develop and evaluate deep learning model to detect udder asymmetry in dairy goats during milking.

Materials and methods on-farm setup

- Video recordings from one dairy goat farm (3 days, around 4 hours, around 1630 goats scored, divided in 2-3-minutes)
- 52 milking spots (one full round)
- Two experts in the field scoring **on-site**
- Simple setup with smartphone camera on a tripod (goats move, camera stays)

Data annotation

- Giving a label to every picture (translating to Al language) -> around 4200 pictures to be annotated (goal: 4500)
- Ground truth (HEAL, LEFT_ASYMMETRY, RIGHT_ASYMMETRY)
- Labelimg manually labelled (platforms or annotation centers available)
- Asymmetrical label (if at least one expert recognized it) -> agreement around 70%
- Quality extremely important (garbage in, garbage out)

The outcome of data annotation: 4232 annotated images + 373 background images (8% of the dataset) = TOTAL 4605 images

• Divided randomly in train, val and test datasets (60:20:20) (stratified by the day of recordings)

Deep learning model training

Stats for nerds

- Object detection model -> YOLOv12m (medium version) as architecture implemented in PyTorch (7)
- Jupyter Notebook with CUDA (GPU 1x NVIDIA A10 cloud or NVIDIA ADA RTX 4500 locally)
- Around 300 training rounds (epoch) with early stopping on
- Batch size n=32, resolution 640 pixels
- Training time around 5 hours
- Hyperparameters default (optimalization pending)

Three categories: 1. heal (symmetric udder) 2. right_asymmetry (right asymmetry) 3. left_asymmetry (left asymmetry) Every AI model is a probabilistic model (never 100% confident)

Three categories: 1. heal (symmetric udder) 2. right_asymmetry (right asymmetry) 3. left_asymmetry (left asymmetry) Every AI model is a probabilistic model (never 100% confident)

Automated detection of asymmetrical udders in dairy goats using deep learning-based imaging by Kacper Libera, Maxime Pals, Yvette de Geus, Gerrit Koop, Lidwien A.M. Smit and Alex Bossers

Artificial Intelligence 4 Animal Science, Zurich, 6.06.2025

Results performance evaluation

Model`s performance on the test dataset (n=900 images): mAP50 = **0.89**, mAP50-95=**0.78**, precision=**0.82**, recall=**0.87**

Inference time: around 80 ms per image

Practical implications

- Farmers can get a report after every milking about the asymmetry status (herd level/individual goat) -> trying to reduce prevalence, objectively compare different farms, dairy processors might also set some targets (and pay extra) + help for the vet
- Individual goats can be tracked, and early signs of asymmetry might be detected -> better udder health management

Objective, relatively cheap, easy to use

Strengths and limitations of the study

- Own data collection, manually annotated and reviewed
- Experts in the field as the source of ground truth (+ scoring on-site)
- Well recognized architecture
- Open code/transparent approach

• LIMITATIONS

- Relatively small dataset
- Only one farm included (not "unique" goats)
- Milking parlour must be a carrousel type

Automated detection of asymmetrical udders in dairy goats using deep learning-based imaging

by Kacper Libera, Maxime Pals, Yvette de Geus, Gerrit Koop, Lidwien A.M. Smit and Alex Bossers

The next steps

- Hyperparameters fine-tuning (pending)
- Publishing these results (manuscript in preparation)
- Model deployment (MLOps) -> requires collaboration with technical company and further model improvement
- Test in real-life (and further improvements)

Demo-app (Gradio)

Thank you for your attention!

Acknowledgments

This work has been funded by PPS Project:

Improving the udder health of dairy goats

WP4: to develop automated system of

udder health monitoring

I would like to thank:

- Maxime Pals
- Lidwien Smit
- Alex Bossers
- Gerrit Koop
- Yvette de Geus
- Adrie van Bentum

I was awarded the Travel Grant for PhD students from the Netherlands Centre for One Health (NCOH)

netherlands centre for one health

Thank you very much!

Automated detection of asymmetrical udders in dairy goats using deep learning-based imaging by Kacper Libera, Maxime Pals, Yvette de Geus, Gerrit Koop, Lidwien A.M. Smit and Alex Bossers

Artificial Intelligence 4 Animal Science, Zurich, 6.06.2025

Selected references

- 1. CBS: Centraal Bureau voor de Statistiek, 2024
- 2. Agrimatie.nl/geitenhouderij
- 3. Koop, G., van Werven, T., Schuiling, H. J., & Nielen, M. (2010). The effect of subclinical mastitis on milk yield in dairy goats. *Journal of dairy science*, 93(12), 5809–5817. https://doi.org/10.3168/jds.2010-3544
- 4. Clark, S., & Mora García, M. B. (2017). A 100-Year Review: Advances in goat milk research. Journal of dairy science, 100(12), 10026–10044. https://doi.org/10.3168/jds.2017-13287
- 5. Gelasakis, A. I., Angelidis, A. S., Giannakou, R., Filioussis, G., Kalamaki, M. S., & Arsenos, G. (2016). Bacterial subclinical mastitis and its effect on milk yield in low-input dairy goat herds. Journal of dairy science, 99(5), 3698–3708. https://doi.org/10.3168/jds.2015-10694
- 6. Gabli, Zahra & Djerrou, Zouhir & Gabli, Abd & Mounira, Bensalem. (2019). Prevalence of mastitis in dairy goat farms in Eastern Algeria. Veterinary World. 12. 1563-1572. 10.14202/vetworld.2019.1563-1572.
- 7. Pytorch.org

Automated detection of asymmetrical udders

in dairy goats using deep learning-based imaging

Kacper Libera*, Maxime Pals, Yvette de Geus, Gerrit Koop, Lidwien A.M. Smit, Alex Bossers

*Kacper Libera, DVM, Resident of ECVPH (Food Safety) email: k.b.libera@uu.nl

My LinkedIn profile:

netherlands centre for one health

Automated detection of asymmetrical udders in dairy goats using deep learning-based imaging

by Kacper Libera, Maxime Pals, Yvette de Geus, Gerrit Koop, Lidwien A.M. Smit and Alex Bossers

