

Changes in Nuclear and Mitochondrial DNA Methylation in Cow Blood Associated with Age and Disease

Lotfi Bouzeraa ^{1,2,*}, Camila Bruna de Lima ^{1,2}, Mohamed Oudihat ^{1,2}, Helene Martin ^{1,2}, Jessica C.S. Marques³, Ronaldo Cerri³, Marc-Andre Sirard ^{1,2,}

1 Centre for Research in Reproductive, Developmental and Intergenerational Health (CRDSI), Department of Animal Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec, QC, Canada

2 Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC, Canada

3 Faculty of Land and Food Systems, University of British Columbia, Vancouver, CB, Canada.

* Presenting author

Concept of epigenetics

Materials (genetic, Ex: genes)

Unlimited possibilities of what can be built.

Concept of epigenetics

Materials (genetic, Ex: genes)

Architecture (epigenetics, Ex. methylation)

Unlimited possibilities of what can be built.

How building materials are used.

Concept of epigenetics

Materials (genetic, Ex: genes)

Architecture (epigenetics, Ex. methylation)

Home (phenotype, Ex. blood)

Unlimited possibilities of what can be built.

How building materials are used.

Observable Feature Set

Epigenetics?

Set of marks that induce changes in gene expression without alteration of the DNA sequence.

(Berger et al., 2009)

Each cell type is characterized by a specific gene expression pattern supported by a specific epigenetic state.

Methylation controls gene expression

The promoter is essential for the regulation of gene expression

Epigenetic age vs chronological age

Genetic modifications

Ex: DNA sequence alterations

Hardly reversible

Epigenetic modifications

Ex: Methylation changes

Easily reversible

Epigenetic age vs chronological age

Genetic modifications

Ex: DNA sequence alterations

Hardly reversible

Epigenetic modifications

Ex: Methylation changes

Easily reversible

Objectives of the study

 To identify changes in methylation associated with age and certain diseases in Holstein cows.

Exploring the association of mitochondrial DNA methylation with age

Explore potential epigenetic biomarkers.

Build a model

48 Control cows

Age: 1.8 to 9.2 years

Build a model

Sequencing

96 healthy cows

Age: 1.8 to 9.2 years

~two years later

48 Control Cows

Longitudinal data

6 cows (18 samples)

3 times

Age:-Newborn 4 days,
-Weaning 77 days
-Adult 3 years

__Methylome of blood markers Enzymatic methyl-seq (EM-seq) 30X

Cross-sectional data Age Distribution

- Lameness
- **Fertility problems**
- **Mastitis**
- Metabolic disorders 3.0 to 5.0 years.

- 1.8 to 9.2 years, Control 2.9 to 9.1 years.
- 3.3 to 4.6 years,
- Low production 1.8 to 5.6 years,
 - 2.8 to 7.8 years,

Cross-sectional dataCorrelation with age

53 million CpG sites

Cross-sectional data ~2 000 age-correlated CpG sites

Correlation coefficient> 0.5, qval < 0.01 and no missing data

Cross-sectional data

Correlation between chronological age and predicted age

62 CpG markers

To avoid overfitting and to assess the generalizability of the model, we applied Leave-one-Out (LOOCV) cross-validation. This approach involved iterative training of the model on all but one sample

Cross-sectional data Age acceleration

the model showed a mean absolute error (MAE) of ~2.5 years and a correlation of 0.16 in diseased cows

- Low production: ~3.1 years
- Metabolic disorders: ~2.4 years
- Fertility problems: ~2.0 years
- Lameness: ~1.5 years
- Mastitis: ~1.3 years

Low-production cows showed the greatest acceleration in age

Longitudinal data

Correlation between chronological age and predicted age

The high variability of ages was reduced through a logarithmic transformation.

Longitudinal and **Cross-Sectional** DNA Methylation Markers

Age and mitochondrial DNA methylation

Among 6k mitochondrial sites, 61 sites with a negative correlation rho = -0,77)

Precision:

10 months

10 CpG markers

Differentially methylated regions (DMRs)

197 DMRs were identified

Methylation difference > 10% and qvalue < 0.05

SYMBOL	width	num.cpgs	diff	FDR	distanceToTSS	GENENAME
MAB21L1	348	63	-14.55	1.48E-02	-2158	mab-21 like 1
MAB21L1	260	54	-14.68	6.64E-04	-1887	mab-21 like 1
NSD1	135	41	-14.67	2.11E-02	-2664	nuclear receptor binding SET domain protein 1
INKA2	155	32	-14.67	4.94E-03	-1517	inka box actin regulator 2
NUDT10	91	21	11.48	1.33E-02	-108	nudix (nucleoside diphosphate linked moiety X)-type motif 10
GABRQ	70	20	-10.21	1.92E-02	-330	gamma-aminobutyric acid type A receptor subunit theta
НОХВ9	189	20	-12.32	3.31E-02	-1392	homeobox B9
RBM33	488	20	16.84	8.36E-04	-2042	RNA binding motif protein 33
INSIG1	29	15	12.05	2.99E-02	-986	insulin induced gene 1
SULT1C4	42	12	-11.54	5.74E-03	-248	sulfotransferase family, cytosolic, 1C, member 4
SYTL2	78	12	-13.81	5.74E-03	-943	synaptotagmin like 2
TBCE	62	12	-13.64	1.70E-02	-1360	tubulin folding cofactor E
IPO7	90	10	-11.22	4.65E-02	-1968	importin 7
TMSB4	104	10	-25.42	4.65E-02	-966	thymosin beta 4, X-linked

MAB21L1 gene contained two DMRs associated with the promoter:

First DMR: 260 bp region with 54 CpG, showing a 14.68% increase in methylation in older cows

Second DMR: 348 bp region with 63 CpG, showing a 14.55% increase in methylation in older cows

Conclusion

 This study highlights the value of blood methylation profiles in investigating age and disease in cattle, paving the way for applications in genomic selection and precision breeding.

Conclusion

- This study highlights the value of blood methylation profiles in investigating age and disease in cattle, paving the way for applications in genomic selection and precision breeding.
- We propose a novel integrative framework called <u>ChronoMeth</u>, which combines nuclear and mitochondrial cytosine methylation profiles to explore molecular signatures of aging and disease susceptibility.

Conclusion

- This study highlights the value of blood methylation profiles in investigating age and disease in cattle, paving the way for applications in genomic selection and precision breeding.
- We propose a novel integrative framework called <u>ChronoMeth</u>, which combines nuclear and mitochondrial cytosine methylation profiles to explore molecular signatures of aging and disease susceptibility.
- This two-level approach enables refined age prediction and offers new insights into the interplay between epigenetic regulation, aging processes, and vulnerability to disease.

Acknowledgement:

Marc-André Sirard

Collaborators:

- Camila Bruna De Lima
- Mohamed Oudihat
- Helene Martin
- Jessica C.S. Marques
- Ronaldo Cerri

Thank you

