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Current pig farming and its challenges

* Challenges: Physiological and environmental stressors that impact the health,
welfare, and productivity of pigs.

* Physiological: Nutritional stress, growth demands, etc.

* Environmental: Climate control issues, overcrowding, etc.
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Post-weaning phase

* The post-weaning phase is a critical period when piglets transition from

mother's milk to solid food.

Post-weaning Growing-Finishing

period

* Challenges include: , ;
* Nutritional stress Weaning
* Social stress |

 Exposure to new pathogens

Challenges Attempt to Adaptation Overwhelming

Arise Deal Process Demands
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From stressors to welfare

Animals express responses while dealing with challenges
physiological and behavioral ear and tail biting

early indicators often emerge before the problem fully develops
Predicting biting indicators

Developing an early warning system

timely interventions, helping animals recover more quickly

Improved resilience and enhanced welfare
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Precision Livestock Farming
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Utilizing Environmental Sensors

®* Objective: Detect conditions that
could lead to biting incidents.

®* Early Warning System: Combine
sensor data to alert farmers to
potential risks.
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Experimental Methodology

* Study Context: Conducted on a commercial pig farm in the Netherlands.

®* Setup: 7 production cycles, 84 pens,
* Each pen housing 30 piglets, in total 2520 piglets,

* We monitored from post-weaning to ~25 kg.

* Sensors Deployed: Monitored environmental conditions on pen level

Environmental sensors
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Raw Data Overview

Environmental Data: Continuous data Manual Data Collection: observations on
collection on NH3, CO2, atmospheric tail and ear biting, used as gold standards
pressure, temperature, humidity, light, for evaluating the early warning system.

and water intake.
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Data Preparation & Labelling

Criteria for abnormal period if:
« >=10% of piglets in the pen show damage

e And >=6% increase since last measurement

Target of early warning system = detecting Pre-abnormal period

Transition

Normal (Pre-abnormal)
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Feature Engineering

*Extracting Key Features from Environmental Data

Exposure time to:

e Ammonia (NH3) Exposure (threshold: 20 ppm)
* CO2 Levels (threshold: 3000 ppm)
 Temperature Tracking (threshold: 31°C)
 Temperature-Humidity index (threshold 74)
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Data Description

eSensors: We used 13 features, including:
eCO2, NH3, temperature, humidity, light, water intake, THI,
exposure time to high levels of environmental factors etc.

eResolution: Each day has 144 time points (e.g., 10-min intervals).
ePen-level data: 84 pens from 7 rounds of data collection (2520 pigs).
eLabels:

e0 = normal
o]l = pre-abnormal / transition

eApproach: Binary classification between 0 (normal) and 1 (transition).

Prediction target: The pre-abnormal (transition) period — critical for early
intervention.
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Model Architecture

" Hybrid Model: Temporal Convolutional Network (TCN) +
Random Forest (RF) Ensemble

Component Role
TCN Captures temporal dependencies
RF Captures feature-level interactions | comenions Tt

Forest

Network

Combines both for improved
performance

Ensemble |

Ensemble
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Temporal Convolutional Network (TCN)

eInput: Sequences of shape (144 time steps x 13 features)
eLayers:
eStacked Temporal Blocks with:
eDilated Conv1D layers (causal)
eBatchNorm + RelLU + Dropout
eResidual connections
eGlobal Average Pooling
eFinal Linear layer — Output logit

Input Ternporal Temporal Temporal Global Avg FC Sigmoid
[batch, 144, 13] Block 1 Block 2 Block 3 oling (Linear) t
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Random Forest + Ensembling

RF input: Flattened features (144 * 13)

Ensemble:
= Average prediction from TCN and RF
= Final probability:

p _ Pren + Prr
final — 2

Reason: Combines sequence-level and aggregate-level insights

WAGENINGEN

EEEEEEEEEEEEEEEEEEE



Evaluation Strategy and Results

Cross-Validation:
o5-fold stratified K-Fold for generalization

Loss Function:
«BCEWithLogitsLoss With class weight to address imbalance

ROC Curve Comparison

1.0 4

TCN Ensembled
TCN + RF
Accuracy 0.65 0.855 ¢ 0o
F1 score 0.60 0.708 ¢
ROC AUC 0.77 0.911
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Feature Importance

Random forest provides interpretable feature importances
Highlights which sensor metrics contributed most to predicting transitions

Atmospheric pressure, CO2, day of experiment and Temperature-humidity
index were the most effective environmental factors

Sensor-wise Feature Importance
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Key Insights

°* Environmental factors alone may not be sufficient to predict biting behavior.
* We considered temporal-only features.

* There are still false negative predictions.

* These findings highlight the importance of incorporating diverse data
sources.

* Future analyses will focus on adding behavioral data, from other sensors:
* Video recordings

* Respiratory health (coughing) sensors from SoundTalks
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Next Steps

* Expand the dataset by including additional production cycles.
* Adding activity of the pens using optical flow methods

* Focus on collecting individual-level data using RFID tags, moving
beyond group-level data.

* Integrate more behavioral data alongside environmental data.

Drinking Behaviour

Respiratory Health Status

Feeding Behaviour /- ™~ /
Video Recordings Audio Recordings \
Movement - g Other Behaviours
Dt L D)

Other Behaviours

* Long-Term Goal:

* Implement the early warning system on a broader scale to enhance its
practical utility in commercial pig farming.
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Conclusion

* Early detection of damaging behavior is critical for pig welfare.
* Environmental sensor data can predict pre-abnormal periods.
* Hybrid TCN + Random Forest model showed strong performance.
®* CO2, THI, and pressure were key predictors.

®* Future work: integrate behavioral and individual-level data.

* Goal: a practical, real-time early warning system for farms.
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Questions and Discussion

Thank you for your attention
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Conclusion

*Enhancing Resilience: Critical to improving pig welfare, especially in modern
farming environments.

*Sensor Fusion: Offers a promising solution for developing effective early warning
systems.

*Ongoing Research: Focused on refining predictive models, integrating diverse
data sources, and enhancing accuracy to support better decision-making.
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Model Architecture

* Architecture:
* Several 1D convolution layers with dilation
 Dropout + RelLU + residual connections
* Final linear layer for binary output (sigmoid)
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Complexity of Biting Behavior

( '\
p
Influenced by
husbandry practices,
diet, and
environmental
. conditions.

\
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Management
strategies help, but
not all challenges
can be eradicated.
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A comprehensive
approach is
necessary to address
unpredictable

factors.
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