medical___ data____ science___ medical____ data_____science____ # Machine Learning for Healthcare ## Healthcare: A multimodal perspective ## **Examples of Multimodal Medical Applications** Rare Diseases Remote Home Monitoring # ChatGPT can now see, hear, and speak https://openai.com/index/chatgpt-can-now-see-hear-and-speak/ ## Multimodality in modern Al Models https://magazine.sebastianraschka.com/p/understanding-multimodal-llms [1] Radford et al., «Learning Transferable Visual Models From Natural Language Supervision», ICML, 2021 e.g., CLIP [1] ## **Healthcare Data** - "small" scale - Missingness - Privacy Concerns - Heterogeneity - Expensive Annotation - Challenging and different data types # Leveraging the structure of the data ## Multimodal Learning under Weak Supervision #### **Weak Supervision** Learn from data without label annotation #### Goals - Learn meaningful representations - Be robust to missing modalities - 1. Sutter et al, «Multimodal Learrning utilizing the Jensen-Shannon Divergence», Neurips 2020 - 2. Daunhawer, Sutter, Vogt, «Self-supervised disentanglement of modality-specific and shared factors improves multimodal generative models», DAGM GCPR, 2020 - 3. Sutter et al., «Generalized Multimodal ELBO», ICLR 2021 - 4. Klug, Sutter, Vogt, «Multimodal Generative Learning on the MIMIC-CXR Database», MIDL 2021 - 5. Daunhawer, Sutter, et al., «On the Limitations of Multimodal VAEs», ICLR 2021 - 6. Sutter et al., «Unity by Diversity: Improved Representation Learning for Multimodal VAEs», Neurips 2024 - 7. Agostini, ..., Vogt and Sutter, «Weakly-Supervised Multimodal Learning on MIMIC-CXR», under submission, 2024 ## Multimodal Variational Autoencoders - extension of the standard Variational Autoencoder [1] - enables joint integration and reconstruction of two or more modalities #### ELBO: $$\log p(oldsymbol{X}) \geq \mathbb{E}_{q(oldsymbol{z} \mid oldsymbol{X})} \left[\log p(oldsymbol{X} \mid oldsymbol{z}) - \log rac{q(oldsymbol{z} \mid oldsymbol{X})}{p(oldsymbol{z})} ight]$$ - $X = \{x_1, \dots, x_M\}$: multimodal sample - x_m : sample of modality m - $p(X \mid z)$: probability of a sample X given the latent vector z - $q(z \mid X)$: posterior approximation of z - p(z): prior distribution of z ## Learning a Joint Multimodal Representation $$\mathcal{E}(\boldsymbol{X}) = \mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{X})} \left[\log p_{\theta}(\boldsymbol{X} \mid \boldsymbol{z}) - \log \frac{q_{\phi}(\boldsymbol{z} \mid \boldsymbol{X})}{p_{\theta}(\boldsymbol{z})} \right]$$ ## Set of Independent VAEs $$\mathcal{E}(\boldsymbol{X}) = \sum_{m=1}^{M} \mathbb{E}_{q^{m}(\boldsymbol{z}_{m}|\boldsymbol{x}_{m})} \left[\log p(\boldsymbol{x}_{m} \mid \boldsymbol{z}_{m}) - \log \frac{q^{m}(\boldsymbol{z}_{m} \mid \boldsymbol{x}_{m})}{p(\boldsymbol{z}_{m})} \right]$$ ## Multimodal Variational Mixture Prior (MMVM) $$\mathcal{E}(\boldsymbol{X}) = \sum_{m=1}^{M} \mathbb{E}_{q^{m}(\boldsymbol{z}_{m}|\boldsymbol{x}_{m})} \left[\log p(\boldsymbol{x}_{m} \mid \boldsymbol{z}_{m}) - \log \frac{q^{m}(\boldsymbol{z}_{m} \mid \boldsymbol{x}_{m})}{h(\boldsymbol{z}_{m} \mid \boldsymbol{X})} \right]$$ ## MMVM VAE From a sum of unimodal ELBOs to the MMVM-prior objective $$\mathcal{E}(\boldsymbol{X}) = \sum_{m=1}^{M} \mathbb{E}_{\boldsymbol{q}^{mm}(\boldsymbol{z}_{mn}||\boldsymbol{x}_{mn})} \left[\log p(\boldsymbol{x}_{mn}||\boldsymbol{z}_{mn}) - \log \frac{q^{m}(\boldsymbol{z}_{m}^{m}(\boldsymbol{z}_{m}^{m}|\boldsymbol{z}_{m}^{m})}{\frac{1}{M} \sum_{m=1}^{M} q^{m}(\boldsymbol{z}_{m}^{m}||\boldsymbol{x}_{m})} \right]$$ We introduce the MMVM prior distributions [1] $$p(\boldsymbol{z}_m) = h(\boldsymbol{z}_m \mid \boldsymbol{X}) = \frac{1}{M} \sum_{\tilde{m}=1}^{M} q^{\tilde{m}}(\boldsymbol{z}_m \mid \boldsymbol{x}_{\tilde{m}})$$ Inspired by the VAMP prior [2], we can show optimality of the chosen prior distribution. ^[2] Tomczak and Welling, VAE with a VAMP prior, AISTATS 2018 ^[1] Sutter et al., Unity by Diversity: Improved Representation Learning in Multimodal VAEs, Neurips 2024 # Mimic-CXR ## MIMIC-CXR - MIMIC-CXR is a large publicly available dataset of chest radiographs¹ - A total of 377.110 images corresponding to 227.835 studies - Multimodal: - Images from multiple view positions - Radiology reports in text form - Electronic Health Records - [1] Johnson et al., «MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports», Sci Data, 2019 - [2] Agostini, ..., Vogt and Sutter, «Weakly-Supervised Multimodal Learning on MIMIC-CXR», ML4H, 2024 ## **Bimodal Mimic-CXR Dataset** - **F**: {'PA','AP'}, **L**: {'Lat','LL'} - $Dataset: \mathbf{X} = \{X^{(i)}\}_{i=1}^{n}, X^{(i)} = \{x_f^{(i)}, x_l^{(i)}\}$ [1] Johnson et al., «MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports», Sci Data, 2019 ^[2] Agostini, ..., Vogt and Sutter, «Weakly-Supervised Multimodal Learning on MIMIC-CXR», ML4H, 2024 ## MIMIC-CXR Labels - Multiclass Labels are generated from radiology reports 14 diseases and 4 classes - Labels are usually binarized ^{1, 2} ^[1] Seyyed-Kalantari, Laleh, et al. "CheXclusion: Fairness gaps in deep chest X-ray classifiers." BIOCOMPUTING 2021: proceedings of the Pacific symposium. 2020. ^[2] Haque, Md Inzamam UI, et al. "Effect of image resolution on automated classification of chest X-rays." Journal of Medical Imaging 10.4 (2023): 044503-044503. ## MIMIC-CXR: Comparison with other VAEs | | | All Labels | No Finding | Cardiomegaly | Edema | Lung Lesion | Consolidation | |-------------|--------------------|---|--|--|--|--|--| | independent | _ , | $\frac{68.7 \pm 9.0}{67.2 \pm 7.6}$ | 76.6 ± 0.3
73.9 ± 0.3 | 76.3 ± 0.4
70.8 ± 0.9 | 83.0 ± 0.3
75.4 ± 0.9 | 61.3 ± 0.4 58.9 ± 0.2 | $62.4 \pm 0.4 \\ 64.4 \pm 1.4 \\ -$ | | AVG | \boldsymbol{z}_l | 71.0 ± 8.6 68.7 ± 8.1 69.4 ± 8.4 | 77.8 ± 0.0
74.8 ± 0.2
76.9 ± 0.4 | $78.5 \pm 0.2 73.7 \pm 0.1 75.2 \pm 0.4$ | 84.6 ± 0.3
78.0 ± 0.3
81.6 ± 0.2 | 61.8 ± 0.2
59.0 ± 0.2
61.0 ± 0.1 | 66.0 ± 0.8
65.4 ± 1.5
65.4 ± 0.8 | | МоЕ | $oldsymbol{z}_l$ | $69.4 \pm 8.8 \\ 68.4 \pm 8.4 \\ 68.2 \pm 8.2$ | $77.1 \pm 0.2 75.9 \pm 0.2 75.8 \pm 0.3$ | $76.5 \pm 0.6 73.3 \pm 0.2 73.9 \pm 0.7$ | $82.4 \pm 0.6 78.0 \pm 0.5 79.7 \pm 0.6$ | 60.6 ± 0.9
58.6 ± 0.8
59.1 ± 0.5 | 62.9 ± 0.6
64.9 ± 0.9
65.1 ± 1.1 | | МоРоЕ | z_l | $\begin{array}{c} 70.2 \pm 8.8 \\ \hline 70.3 \pm 8.6 \\ \hline 70.0 \pm 8.7 \end{array}$ | 77.4 ± 0.1
77.1 ± 0.1
77.3 ± 0.1 | $77.1 \pm 0.1 75.5 \pm 0.1 76.4 \pm 0.2$ | 83.1 ± 0.6
81.1 ± 0.8
82.3 ± 0.6 | 60.7 ± 0.8
60.8 ± 0.3
60.4 ± 0.9 | 63.9 ± 0.3
65.8 ± 0.8
65.2 ± 0.1 | | РоЕ | \boldsymbol{z}_l | $71.3 \pm 8.4 \\ 69.4 \pm 8.0 \\ 70.3 \pm 8.9$ | $77.2 \pm 0.2 \\ 74.6 \pm 0.1 \\ 77.5 \pm 0.1$ | $78.5 \pm 0.3 \\ 74.8 \pm 0.1 \\ 76.8 \pm 0.2$ | $84.5 \pm 0.3 \\ 79.1 \pm 0.1 \\ 83.4 \pm 0.3$ | 63.4 ± 0.4
59.3 ± 0.3
60.4 ± 0.7 | $66.7 \pm 0.8 \\ 66.7 \pm 0.9 \\ 66.2 \pm 0.4$ | | MMVM | | 73.3 ± 8.9 73.0 ± 8.5 | 79.1 ± 0.1
78.3 ± 0.1 | 80.5 ± 0.1 78.7 ± 0.0 | 86.3 ± 0.1
84.3 ± 0.3 | 64.1 ± 0.2 63.0 ± 0.7 | 69.1 ± 0.6 70.2 ± 0.8 | We report the AUROC of binary classification tasks. Medical Data Science 20.06.2025 23 ^[1] Sutter et al., «Unity by Diversity: Improved Representation Learning for Multimodal VAEs», Neurips 2024 ^[2] Agostini, ..., Vogt and Sutter, «Weakly-Supervised Multimodal Learning on MIMIC-CXR», ML4H, 2024 ## MIMIC-CXR: Comparison with other VAEs | | | All Labels | No Finding | Cardiomegaly | Edema | Lung Lesion | Consolidation | |-------------|----------------------|-------------------|-----------------------|----------------|----------------|-----------------------|----------------| | independent | $oldsymbol{z}_f$ | 68.7 ± 9.0 | 76.6 ± 0.3 | 76.3 ± 0.4 | 83.0 ± 0.3 | 61.3 ± 0.4 | 62.4 ± 0.4 | | | $oldsymbol{z}_l$ | 67.2 ± 7.6 | 73.9 ± 0.3 | 70.8 ± 0.9 | 75.4 ± 0.9 | 58.9 ± 0.2 | 64.4 ± 1.4 | | | $oldsymbol{z}_j$ | - | - | - | - | - | - | | AVG | \boldsymbol{z}_f | 71.0 ± 8.6 | 77.8 ± 0.0 | 78.5 ± 0.2 | 84.6 ± 0.3 | 61.8 ± 0.2 | 66.0 ± 0.8 | | | $oldsymbol{z}_l$ | 68.7 ± 8.1 | 74.8 ± 0.2 | 73.7 ± 0.1 | 78.0 ± 0.3 | 59.0 ± 0.2 | 65.4 ± 1.5 | | | $oldsymbol{z}_j$ | 69.4 ± 8.4 | 76.9 ± 0.4 | 75.2 ± 0.4 | 81.6 ± 0.2 | 61.0 ± 0.1 | 65.4 ± 0.8 | | МоЕ | $oldsymbol{z}_f$ | 69.4 ± 8.8 | 77.1 ± 0.2 | 76.5 ± 0.6 | 82.4 ± 0.6 | 60.6 ± 0.9 | 62.9 ± 0.6 | | | \boldsymbol{z}_l | 68.4 ± 8.4 | 75.9 ± 0.2 | 73.3 ± 0.2 | 78.0 ± 0.5 | 58.6 ± 0.8 | 64.9 ± 0.9 | | | $oldsymbol{z}_j$ | 68.2 ± 8.2 | 75.8 ± 0.3 | 73.9 ± 0.7 | 79.7 ± 0.6 | 59.1 ± 0.5 | 65.1 ± 1.1 | | МоРоЕ | $oldsymbol{z}_f$ | 70.2 ± 8.8 | 77.4 ± 0.1 | 77.1 ± 0.1 | 83.1 ± 0.6 | 60.7 ± 0.8 | 63.9 ± 0.3 | | | $oldsymbol{z}_l$ | 70.3 ± 8.6 | 77.1 ± 0.1 | 75.5 ± 0.1 | 81.1 ± 0.8 | 60.8 ± 0.3 | 65.8 ± 0.8 | | | $oldsymbol{z}_j$ | 70.0 ± 8.7 | 77.3 ± 0.1 | 76.4 ± 0.2 | 82.3 ± 0.6 | 60.4 ± 0.9 | 65.2 ± 0.1 | | PoE | $oldsymbol{z}_f$ | 71.3 ± 8.4 | 77.2 ± 0.2 | 78.5 ± 0.3 | 84.5 ± 0.3 | 63.4 ± 0.4 | 66.7 ± 0.8 | | | $oldsymbol{z}_l$ | 69.4 ± 8.0 | 74.6 ± 0.1 | 74.8 ± 0.1 | 79.1 ± 0.1 | 59.3 ± 0.3 | 66.7 ± 0.9 | | | \boldsymbol{z}_{j} | 70.3 ± 8.9 | 77.5 ± 0.1 | 76.8 ± 0.2 | 83.4 ± 0.3 | 60.4 ± 0.7 | 66.2 ± 0.4 | | MMVM | $oldsymbol{z}_f$ | 73.3 ± 8.9 | 79.1 \pm 0.1 | 80.5 ± 0.1 | 86.3 ± 0.1 | 64.1 \pm 0.2 | 69.1 ± 0.6 | | | \boldsymbol{z}_l | 73.0 ± 8.5 | 78.3 ± 0.1 | 78.7 ± 0.0 | 84.3 ± 0.3 | 63.0 ± 0.7 | 70.2 ± 0.8 | | | $oldsymbol{z}_j$ | - | - | - | - | - | - | #### We report the AUROC of binary classification tasks. ^[1] Sutter et al., «Unity by Diversity: Improved Representation Learning for Multimodal VAEs», Neurips 2024 ^[2] Agostini, ..., Vogt and Sutter, «Weakly-Supervised Multimodal Learning on MIMIC-CXR», ML4H, 2024 ## MIMIC-CXR: Comparison with Supervised Approaches ^[1] Sutter et al., «Unity by Diversity: Improved Representation Learning for Multimodal VAEs», Neurips 2024 ^[2] Agostini, ..., Vogt and Sutter, «Weakly-Supervised Multimodal Learning on MIMIC-CXR», ML4H, 2024 # Masked Autoencoders: A more modern Approach Picture from He et al., «Masked Autoencoders are scalable Vision Learners», CVPR 2022 # Regularized Masked Autoencoders [1] Agostini, ..., Vogt and Sutter, «Leveraging the Structure of Medical Data for Improved Representation Learning», under submission, 2025 Medical Data Science 20.06.2025 27 # Regularized MAE: Results ^[1] Chen et al., «CheXagent: Towards a Foundation Model for Chest X-Ray Interpretation», arxiv preprint. 2024 ^[2] Radford et al., «Learning Transferable Visual Models From Natural Language Supervision», ICML, 2021 ## Conclusion & Future Steps #### **MIMIC** Include additional modalities: timeseries, lab values, US, ECG, etc. #### **Multimodal ML** - Novel multimodal objective: strong results on MIMIC-CXR - Regularization can help improve performance #### General - Multimodal learning is key in applying ML to the medical domain: challenges and opportunities - Self-supervised learning especially beneficial in the specialized domains - Ideas from multimodal learning are broadly applicable Thomas M. Sutter Postdoc thomas.sutter@inf.ethz.ch ETH Zürich Medical Data Science CAB G 37.1 Universitätsstrasse 6 8006 Zürich https://thomassutter.github.io/