

medical___ data____ science___

medical____ data_____science____

Machine Learning for Healthcare

Healthcare: A multimodal perspective

Examples of Multimodal Medical Applications

Rare Diseases

Remote Home Monitoring

ChatGPT can now see, hear, and speak

https://openai.com/index/chatgpt-can-now-see-hear-and-speak/

Multimodality in modern Al Models

https://magazine.sebastianraschka.com/p/understanding-multimodal-llms
[1] Radford et al., «Learning Transferable Visual Models From Natural Language Supervision», ICML, 2021

e.g., CLIP [1]

Healthcare Data

- "small" scale
- Missingness
- Privacy Concerns
- Heterogeneity
- Expensive Annotation
- Challenging and different data types

Leveraging the structure of the data

Multimodal Learning under Weak Supervision

Weak Supervision

Learn from data without label annotation

Goals

- Learn meaningful representations
- Be robust to missing modalities

- 1. Sutter et al, «Multimodal Learrning utilizing the Jensen-Shannon Divergence», Neurips 2020
- 2. Daunhawer, Sutter, Vogt, «Self-supervised disentanglement of modality-specific and shared factors improves multimodal generative models», DAGM GCPR, 2020
- 3. Sutter et al., «Generalized Multimodal ELBO», ICLR 2021
- 4. Klug, Sutter, Vogt, «Multimodal Generative Learning on the MIMIC-CXR Database», MIDL 2021
- 5. Daunhawer, Sutter, et al., «On the Limitations of Multimodal VAEs», ICLR 2021
- 6. Sutter et al., «Unity by Diversity: Improved Representation Learning for Multimodal VAEs», Neurips 2024
- 7. Agostini, ..., Vogt and Sutter, «Weakly-Supervised Multimodal Learning on MIMIC-CXR», under submission, 2024

Multimodal Variational Autoencoders

- extension of the standard Variational Autoencoder [1]
- enables joint integration and reconstruction of two or more modalities

ELBO:

$$\log p(oldsymbol{X}) \geq \mathbb{E}_{q(oldsymbol{z} \mid oldsymbol{X})} \left[\log p(oldsymbol{X} \mid oldsymbol{z}) - \log rac{q(oldsymbol{z} \mid oldsymbol{X})}{p(oldsymbol{z})}
ight]$$

- $X = \{x_1, \dots, x_M\}$: multimodal sample
- x_m : sample of modality m
- $p(X \mid z)$: probability of a sample X given the latent vector z
- $q(z \mid X)$: posterior approximation of z
- p(z): prior distribution of z

Learning a Joint Multimodal Representation

$$\mathcal{E}(\boldsymbol{X}) = \mathbb{E}_{q_{\phi}(\boldsymbol{z}|\boldsymbol{X})} \left[\log p_{\theta}(\boldsymbol{X} \mid \boldsymbol{z}) - \log \frac{q_{\phi}(\boldsymbol{z} \mid \boldsymbol{X})}{p_{\theta}(\boldsymbol{z})} \right]$$

Set of Independent VAEs

$$\mathcal{E}(\boldsymbol{X}) = \sum_{m=1}^{M} \mathbb{E}_{q^{m}(\boldsymbol{z}_{m}|\boldsymbol{x}_{m})} \left[\log p(\boldsymbol{x}_{m} \mid \boldsymbol{z}_{m}) - \log \frac{q^{m}(\boldsymbol{z}_{m} \mid \boldsymbol{x}_{m})}{p(\boldsymbol{z}_{m})} \right]$$

Multimodal Variational Mixture Prior (MMVM)

$$\mathcal{E}(\boldsymbol{X}) = \sum_{m=1}^{M} \mathbb{E}_{q^{m}(\boldsymbol{z}_{m}|\boldsymbol{x}_{m})} \left[\log p(\boldsymbol{x}_{m} \mid \boldsymbol{z}_{m}) - \log \frac{q^{m}(\boldsymbol{z}_{m} \mid \boldsymbol{x}_{m})}{h(\boldsymbol{z}_{m} \mid \boldsymbol{X})} \right]$$

MMVM VAE

From a sum of unimodal ELBOs to the MMVM-prior objective

$$\mathcal{E}(\boldsymbol{X}) = \sum_{m=1}^{M} \mathbb{E}_{\boldsymbol{q}^{mm}(\boldsymbol{z}_{mn}||\boldsymbol{x}_{mn})} \left[\log p(\boldsymbol{x}_{mn}||\boldsymbol{z}_{mn}) - \log \frac{q^{m}(\boldsymbol{z}_{m}^{m}(\boldsymbol{z}_{m}^{m}|\boldsymbol{z}_{m}^{m})}{\frac{1}{M} \sum_{m=1}^{M} q^{m}(\boldsymbol{z}_{m}^{m}||\boldsymbol{x}_{m})} \right]$$

We introduce the MMVM prior distributions [1]

$$p(\boldsymbol{z}_m) = h(\boldsymbol{z}_m \mid \boldsymbol{X}) = \frac{1}{M} \sum_{\tilde{m}=1}^{M} q^{\tilde{m}}(\boldsymbol{z}_m \mid \boldsymbol{x}_{\tilde{m}})$$

Inspired by the VAMP prior [2], we can show optimality of the chosen prior distribution.

^[2] Tomczak and Welling, VAE with a VAMP prior, AISTATS 2018

^[1] Sutter et al., Unity by Diversity: Improved Representation Learning in Multimodal VAEs, Neurips 2024

Mimic-CXR

MIMIC-CXR

- MIMIC-CXR is a large publicly available dataset of chest radiographs¹
- A total of 377.110 images corresponding to 227.835 studies
- Multimodal:
 - Images from multiple view positions
 - Radiology reports in text form
 - Electronic Health Records

- [1] Johnson et al., «MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports», Sci Data, 2019
- [2] Agostini, ..., Vogt and Sutter, «Weakly-Supervised Multimodal Learning on MIMIC-CXR», ML4H, 2024

Bimodal Mimic-CXR Dataset

- **F**: {'PA','AP'}, **L**: {'Lat','LL'}
- $Dataset: \mathbf{X} = \{X^{(i)}\}_{i=1}^{n}, X^{(i)} = \{x_f^{(i)}, x_l^{(i)}\}$

[1] Johnson et al., «MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports», Sci Data, 2019

^[2] Agostini, ..., Vogt and Sutter, «Weakly-Supervised Multimodal Learning on MIMIC-CXR», ML4H, 2024

MIMIC-CXR Labels

- Multiclass Labels are generated from radiology reports 14 diseases and 4 classes
- Labels are usually binarized ^{1, 2}

^[1] Seyyed-Kalantari, Laleh, et al. "CheXclusion: Fairness gaps in deep chest X-ray classifiers." BIOCOMPUTING 2021: proceedings of the Pacific symposium. 2020.

^[2] Haque, Md Inzamam UI, et al. "Effect of image resolution on automated classification of chest X-rays." Journal of Medical Imaging 10.4 (2023): 044503-044503.

MIMIC-CXR: Comparison with other VAEs

		All Labels	No Finding	Cardiomegaly	Edema	Lung Lesion	Consolidation
independent	_ ,	$\frac{68.7 \pm 9.0}{67.2 \pm 7.6}$	76.6 ± 0.3 73.9 ± 0.3	76.3 ± 0.4 70.8 ± 0.9	83.0 ± 0.3 75.4 ± 0.9	61.3 ± 0.4 58.9 ± 0.2	$62.4 \pm 0.4 \\ 64.4 \pm 1.4 \\ -$
AVG	\boldsymbol{z}_l	71.0 ± 8.6 68.7 ± 8.1 69.4 ± 8.4	77.8 ± 0.0 74.8 ± 0.2 76.9 ± 0.4	$78.5 \pm 0.2 73.7 \pm 0.1 75.2 \pm 0.4$	84.6 ± 0.3 78.0 ± 0.3 81.6 ± 0.2	61.8 ± 0.2 59.0 ± 0.2 61.0 ± 0.1	66.0 ± 0.8 65.4 ± 1.5 65.4 ± 0.8
МоЕ	$oldsymbol{z}_l$	$69.4 \pm 8.8 \\ 68.4 \pm 8.4 \\ 68.2 \pm 8.2$	$77.1 \pm 0.2 75.9 \pm 0.2 75.8 \pm 0.3$	$76.5 \pm 0.6 73.3 \pm 0.2 73.9 \pm 0.7$	$82.4 \pm 0.6 78.0 \pm 0.5 79.7 \pm 0.6$	60.6 ± 0.9 58.6 ± 0.8 59.1 ± 0.5	62.9 ± 0.6 64.9 ± 0.9 65.1 ± 1.1
МоРоЕ	z_l	$\begin{array}{c} 70.2 \pm 8.8 \\ \hline 70.3 \pm 8.6 \\ \hline 70.0 \pm 8.7 \end{array}$	77.4 ± 0.1 77.1 ± 0.1 77.3 ± 0.1	$77.1 \pm 0.1 75.5 \pm 0.1 76.4 \pm 0.2$	83.1 ± 0.6 81.1 ± 0.8 82.3 ± 0.6	60.7 ± 0.8 60.8 ± 0.3 60.4 ± 0.9	63.9 ± 0.3 65.8 ± 0.8 65.2 ± 0.1
РоЕ	\boldsymbol{z}_l	$71.3 \pm 8.4 \\ 69.4 \pm 8.0 \\ 70.3 \pm 8.9$	$77.2 \pm 0.2 \\ 74.6 \pm 0.1 \\ 77.5 \pm 0.1$	$78.5 \pm 0.3 \\ 74.8 \pm 0.1 \\ 76.8 \pm 0.2$	$84.5 \pm 0.3 \\ 79.1 \pm 0.1 \\ 83.4 \pm 0.3$	63.4 ± 0.4 59.3 ± 0.3 60.4 ± 0.7	$66.7 \pm 0.8 \\ 66.7 \pm 0.9 \\ 66.2 \pm 0.4$
MMVM		73.3 ± 8.9 73.0 ± 8.5	79.1 ± 0.1 78.3 ± 0.1	80.5 ± 0.1 78.7 ± 0.0	86.3 ± 0.1 84.3 ± 0.3	64.1 ± 0.2 63.0 ± 0.7	69.1 ± 0.6 70.2 ± 0.8

We report the AUROC of binary classification tasks.

Medical Data Science 20.06.2025

23

^[1] Sutter et al., «Unity by Diversity: Improved Representation Learning for Multimodal VAEs», Neurips 2024

^[2] Agostini, ..., Vogt and Sutter, «Weakly-Supervised Multimodal Learning on MIMIC-CXR», ML4H, 2024

MIMIC-CXR: Comparison with other VAEs

		All Labels	No Finding	Cardiomegaly	Edema	Lung Lesion	Consolidation
independent	$oldsymbol{z}_f$	68.7 ± 9.0	76.6 ± 0.3	76.3 ± 0.4	83.0 ± 0.3	61.3 ± 0.4	62.4 ± 0.4
	$oldsymbol{z}_l$	67.2 ± 7.6	73.9 ± 0.3	70.8 ± 0.9	75.4 ± 0.9	58.9 ± 0.2	64.4 ± 1.4
	$oldsymbol{z}_j$	-	-	-	-	-	-
AVG	\boldsymbol{z}_f	71.0 ± 8.6	77.8 ± 0.0	78.5 ± 0.2	84.6 ± 0.3	61.8 ± 0.2	66.0 ± 0.8
	$oldsymbol{z}_l$	68.7 ± 8.1	74.8 ± 0.2	73.7 ± 0.1	78.0 ± 0.3	59.0 ± 0.2	65.4 ± 1.5
	$oldsymbol{z}_j$	69.4 ± 8.4	76.9 ± 0.4	75.2 ± 0.4	81.6 ± 0.2	61.0 ± 0.1	65.4 ± 0.8
МоЕ	$oldsymbol{z}_f$	69.4 ± 8.8	77.1 ± 0.2	76.5 ± 0.6	82.4 ± 0.6	60.6 ± 0.9	62.9 ± 0.6
	\boldsymbol{z}_l	68.4 ± 8.4	75.9 ± 0.2	73.3 ± 0.2	78.0 ± 0.5	58.6 ± 0.8	64.9 ± 0.9
	$oldsymbol{z}_j$	68.2 ± 8.2	75.8 ± 0.3	73.9 ± 0.7	79.7 ± 0.6	59.1 ± 0.5	65.1 ± 1.1
МоРоЕ	$oldsymbol{z}_f$	70.2 ± 8.8	77.4 ± 0.1	77.1 ± 0.1	83.1 ± 0.6	60.7 ± 0.8	63.9 ± 0.3
	$oldsymbol{z}_l$	70.3 ± 8.6	77.1 ± 0.1	75.5 ± 0.1	81.1 ± 0.8	60.8 ± 0.3	65.8 ± 0.8
	$oldsymbol{z}_j$	70.0 ± 8.7	77.3 ± 0.1	76.4 ± 0.2	82.3 ± 0.6	60.4 ± 0.9	65.2 ± 0.1
PoE	$oldsymbol{z}_f$	71.3 ± 8.4	77.2 ± 0.2	78.5 ± 0.3	84.5 ± 0.3	63.4 ± 0.4	66.7 ± 0.8
	$oldsymbol{z}_l$	69.4 ± 8.0	74.6 ± 0.1	74.8 ± 0.1	79.1 ± 0.1	59.3 ± 0.3	66.7 ± 0.9
	\boldsymbol{z}_{j}	70.3 ± 8.9	77.5 ± 0.1	76.8 ± 0.2	83.4 ± 0.3	60.4 ± 0.7	66.2 ± 0.4
MMVM	$oldsymbol{z}_f$	73.3 ± 8.9	79.1 \pm 0.1	80.5 ± 0.1	86.3 ± 0.1	64.1 \pm 0.2	69.1 ± 0.6
	\boldsymbol{z}_l	73.0 ± 8.5	78.3 ± 0.1	78.7 ± 0.0	84.3 ± 0.3	63.0 ± 0.7	70.2 ± 0.8
	$oldsymbol{z}_j$	-	-	-	-	-	-

We report the AUROC of binary classification tasks.

^[1] Sutter et al., «Unity by Diversity: Improved Representation Learning for Multimodal VAEs», Neurips 2024

^[2] Agostini, ..., Vogt and Sutter, «Weakly-Supervised Multimodal Learning on MIMIC-CXR», ML4H, 2024

MIMIC-CXR: Comparison with Supervised Approaches

^[1] Sutter et al., «Unity by Diversity: Improved Representation Learning for Multimodal VAEs», Neurips 2024

^[2] Agostini, ..., Vogt and Sutter, «Weakly-Supervised Multimodal Learning on MIMIC-CXR», ML4H, 2024

Masked Autoencoders: A more modern Approach

Picture from He et al., «Masked Autoencoders are scalable Vision Learners», CVPR 2022

Regularized Masked Autoencoders

[1] Agostini, ..., Vogt and Sutter, «Leveraging the Structure of Medical Data for Improved Representation Learning», under submission, 2025

Medical Data Science 20.06.2025

27

Regularized MAE: Results

^[1] Chen et al., «CheXagent: Towards a Foundation Model for Chest X-Ray Interpretation», arxiv preprint. 2024

^[2] Radford et al., «Learning Transferable Visual Models From Natural Language Supervision», ICML, 2021

Conclusion & Future Steps

MIMIC

Include additional modalities: timeseries, lab values, US, ECG, etc.

Multimodal ML

- Novel multimodal objective: strong results on MIMIC-CXR
- Regularization can help improve performance

General

- Multimodal learning is key in applying ML to the medical domain: challenges and opportunities
- Self-supervised learning especially beneficial in the specialized domains
- Ideas from multimodal learning are broadly applicable

Thomas M. Sutter
Postdoc
thomas.sutter@inf.ethz.ch

ETH Zürich Medical Data Science CAB G 37.1 Universitätsstrasse 6 8006 Zürich

https://thomassutter.github.io/

