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Machine Learning for Healthcare
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Machine Learning Model
Pneumonia:

yes or no?



Healthcare: A multimodal perspective
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Examples of Multimodal Medical Applications

Heart-DefectsAppendicitisLung Cancer

PH Remote Home Monitoring

Multi-omics 
Rare Diseases

MIMIC- CXR

COPD
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https://openai.com/index/chatgpt-can-now-see-hear-and-speak/



Multimodality in modern AI Models
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https://magazine.sebastianraschka.com/p/understanding-multimodal-llms

[1] Radford et al., «Learning Transferable Visual Models From Natural Language Supervision», ICML, 2021

e.g., CLIP [1]



Healthcare Data
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• ”small” scale

• Missingness

• Privacy Concerns

• Heterogeneity

• Expensive Annotation

• Challenging and different data types



Leveraging the structure of the data
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Multimodal Learning under Weak Supervision

Weak Supervision

Learn from data without label annotation

Goals

• Learn meaningful representations

• Be robust to missing modalities
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1. Sutter et al, «Multimodal Learrning utilizing the Jensen-Shannon Divergence», Neurips 2020

2. Daunhawer, Sutter, Vogt, «Self-supervised disentanglement of modality-specific and shared factors improves multimodal generative models», DAGM GCPR, 2020

3. Sutter et al., «Generalized Multimodal ELBO», ICLR 2021

4. Klug, Sutter, Vogt, «Multimodal Generative Learning on the MIMIC-CXR Database», MIDL 2021

5. Daunhawer, Sutter, et al., «On the Limitations of Multimodal VAEs», ICLR 2021

6. Sutter et al., «Unity by Diversity: Improved Representation Learning for Multimodal VAEs», Neurips 2024

7. Agostini, …, Vogt and Sutter, «Weakly-Supervised Multimodal Learning on MIMIC-CXR», under submission, 2024



Multimodal Variational Autoencoders
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• extension of the standard Variational Autoencoder [1]  
• enables joint integration and reconstruction of two or more modalities 

[1] Kingma, Welling, Auto-Encoding Variational Bayes, ICLR, 2014



Learning a Joint Multimodal Representation
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Set of Independent VAEs
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Multimodal Variational Mixture Prior (MMVM)
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MMVM VAE
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From a sum of unimodal ELBOs to the MMVM-prior objective

We introduce the MMVM prior distributions [1]

Inspired by the VAMP prior [2], we can show optimality of the chosen prior distribution.

[1] Sutter et al., Unity by Diversity: Improved Representation Learning in Multimodal VAEs, Neurips 2024

[2] Tomczak and Welling, VAE with a VAMP prior, AISTATS 2018



Mimic-CXR
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MIMIC-CXR
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• MIMIC-CXR is a large publicly available dataset 

of chest radiographs1

• A total of 377.110 images corresponding to 

227.835 studies

• Multimodal:

❖ Images from multiple view positions

❖ Radiology reports in text form

❖ Electronic Health Records

[1] Johnson et al., «MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports», Sci Data, 2019

[2] Agostini, …, Vogt and Sutter, «Weakly-Supervised Multimodal Learning on MIMIC-CXR», ML4H, 2024



Bimodal Mimic-CXR Dataset
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No Findings No Findings Consolidation Consolidation Atelectasis

• 𝑭: {′𝑃𝐴′,′ 𝐴𝑃′}, 𝑳: {′𝐿𝑎𝑡′, ′𝐿𝐿′}

• 𝐷𝑎𝑡𝑎𝑠𝑒𝑡: 𝐗 = {X i }i=1
n , X i = {x𝑓

i
, x𝑙

i
}

[1] Johnson et al., «MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports», Sci Data, 2019

[2] Agostini, …, Vogt and Sutter, «Weakly-Supervised Multimodal Learning on MIMIC-CXR», ML4H, 2024



MIMIC-CXR Labels

• Multiclass Labels are generated from radiology reports - 14 diseases and 4 classes

• Labels are usually binarized 1, 2

20.06.2025Medical Data Science 22

[1] Seyyed-Kalantari, Laleh, et al. "CheXclusion: Fairness gaps in deep chest X-ray classifiers." BIOCOMPUTING 2021: proceedings of the Pacific symposium. 2020.

[2] Haque, Md Inzamam Ul, et al. "Effect of image resolution on automated classification of chest X-rays." Journal of Medical Imaging 10.4 (2023): 044503-044503.



MIMIC-CXR: Comparison with other VAEs
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We report the AUROC of binary classification tasks.
[1] Sutter et al., «Unity by Diversity: Improved Representation Learning for Multimodal VAEs», Neurips 2024

[2] Agostini, …, Vogt and Sutter, «Weakly-Supervised Multimodal Learning on MIMIC-CXR», ML4H, 2024



MIMIC-CXR: Comparison with other VAEs
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We report the AUROC of binary classification tasks.
[1] Sutter et al., «Unity by Diversity: Improved Representation Learning for Multimodal VAEs», Neurips 2024

[2] Agostini, …, Vogt and Sutter, «Weakly-Supervised Multimodal Learning on MIMIC-CXR», ML4H, 2024



MIMIC-CXR: Comparison with Supervised Approaches

W eak l y-Super v ised M ul t imodal Lear ning on M IM IC-CX R

modalit ies. In the independent VAEs, each modal-154

ity is t rained separately, without interact ion or reg-155

ularizat ion across modalit ies. In addit ion, we eval-156

uate four aggregat ion-based mult imodal VAEs with157

di↵erent aggregat ion funct ions f agg(·): a simple av-158

eraging (AVG, Hosoya, 2018), a product -of-experts159

(PoE, Wu and Goodman, 2018), a mixture-of-experts160

(MoE, Shi et al., 2019), and a mixture-of-products-161

of-experts (MoPoE, Sut ter et al., 2021). Appendix162

B.1 provides the implementat ion details.163

Set t ing We train all VAEs on the same training164

set under ident ical condit ions. Each VAE is t rained165

by opt imizing its respect ive object ive, E(X ), as out -166

lined in sect ion 2. Subsequent ly, we assess the qual-167

ity of the learned latent representat ions by t raining168

non-linear classifiers in a supervised set t ing. More169

specifically, we use latent representat ions of the t rain-170

ing set to independent ly t rain binary random forest171

classifiers for each label and method. We assess the172

performance of these classifiers on the latent repre-173

sentat ions of the test set using AUROC scores. For174

all the methods, we compare the quality of the uni-175

modal representat ions z f and z l . Addit ionally, for176

the aggregat ion-based VAEs, we evaluate the joint177

representat ion z j .178

R esult s The MMVM method consistent ly outper-179

forms the baselines by learning representat ions that180

lead to superior classificat ion performance. Table 1181

presents the AUROC of the classifiers t rained on the182

frontal, lateral, and joint representat ions (z f , z l ,183

z j respect ively). Results suggest that z f is more184

predict ive than z l for most labels. Nevertheless,185

MMVM ’s performance on the less predict ive lateral186

modality z l surpasses that of the other VAEs on the187

more predict ive frontal modality z f for labels such188

as Cardiomegaly and No Finding. This shows the189

MMVM ’s ability to soft -share informat ion between190

modality-specific latent representat ions during t rain-191

ing, thereby enhancing the representat ion of each192

modality. For aggregat ion-based methods, the classi-193

ficat ion performancebased on z j doesnot outperform194

that of their best unimodal representat ion, despite195

having access to more informat ion. This highlights196

the difficulty of preserving modality-specific details197

in aggregat ion-based methods. In cont rast , MMVM198

unimodal representat ions benefit from the comple-199

mentary modality during t raining while successfully200

preserving modality-specific informat ion, achieving201

superior classificat ion performance. Extensive results202

can be found in Appendix B.2.1.203

Figure 1: Comparison of the MMVM VAE and

fully supervised approaches at di↵erent levels of la-

bel availability. |L | denotes the number of labeled

training samples available, where |L | 2 { 103, 5 ⇥
103, 104, 2⇥104, 4⇥104, 6⇥104, 8⇥104, 105} .

4.2. I mpact of Label A vai labi l i t y 204

Next , we explore the e↵ect of di↵erent amounts of 205

labeled data on the performance of the MMVM 206

VAE. Specifically, we assess the e↵ect iveness of the 207

MMVM VAE against fully-supervised deep neural 208

network classifiers. This comparison aims to de- 209

termine whether downstream classifiers t rained on 210

the representat ions learned by the VAE—leveraging 211

unlabeled data during pre-t raining—can match or 212

even surpass the performance of fully supervised ap- 213

proaches that have to rely solely on labeled data. 214

B asel ines We consider three fully-supervised ap- 215

proaches: Supervised-Independent, which involves 216

t raining independent unimodal classifiers separately; 217

Supervised-Ensemble, which const ructs an ensemble 218

from these independent unimodal classifiers, aver- 219

aging their output scores to produce the final pre- 220

dict ion; and Supervised-Multimodal, which involves 221

t raining a single mult imodal classifier using a late fu- 222

sion technique (Zhou et al., 2024). Further details 223

are provided in Appendix B.1. 224

Set t ing We evaluate the performance of all meth- 225

ods under varying levels of label scarcity by pro- 226

gressively increasing the amount of labeled training 227

data. TheMMVM VAE is init ially t rained on the full 228

t raining set without label information. Subsequent ly, 229

at each evaluat ion step, downstream classifiers are 230

3
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[1] Sutter et al., «Unity by Diversity: Improved Representation Learning for Multimodal VAEs», Neurips 2024

[2] Agostini, …, Vogt and Sutter, «Weakly-Supervised Multimodal Learning on MIMIC-CXR», ML4H, 2024



Masked Autoencoders: A more modern Approach
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Picture from He et al., «Masked Autoencoders are scalable Vision Learners», CVPR 2022



Regularized Masked Autoencoders
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Encoder

Encoder Decoder

Decoder

[1] Agostini, …, Vogt and Sutter, «Leveraging the Structure of Medical Data for Improved Representation Learning», under submission, 2025



Regularized MAE: Results
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CheXagent [1]

[1] Chen et al., «CheXagent: Towards a Foundation Model for Chest X-Ray Interpretation», arxiv

     preprint, 2024

[2] Radford et al., «Learning Transferable Visual Models From Natural Language Supervision»,

     ICML, 2021

CLIP [2]0.62



Conclusion & Future Steps

MIMIC

− Include additional modalities: timeseries, lab values, US , ECG, etc

Multimodal ML

− Novel multimodal objective: strong results on MIMIC-CXR

− Regularization can help improve performance

General

− Multimodal learning is key in applying ML to the medical domain: challenges and opportunities

− Self-supervised learning especially beneficial in the specialized domains

− Ideas from multimodal learning are broadly applicable

20.06.2025Medical Data Science 29
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