Al for Scientists: Perception, Reasoning, & Discovery

Jennifer J. Sun

6/5/2025

A Bernese mountain dog giving a talk at the AI for animal science conference at ETH Zurich.

A Bernese mountain dog giving a talk at the AI for animal science conference at ETH Zurich.

A Bernese mountain dog giving a talk at the AI for animal science conference at ETH Zurich.

Insight

Raw Data

Insight

Konrad Lorenz, On Aggression ~1963, p.97

Figure 4

Cornell Dairy

How many animals?

Are they healthy?

How does X affect Y?

Why does X affect Y?

Raw Data

Insight

How to best use Al to extract

insight from raw data?

Can Al automatically track these fish?

Abby Grassick

Challenge 1: Annotation bottleneck

~50 "tracking" papers in vision conferences **last year**

Challenge 1: Annotation bottleneck Challenge 2: Vast model space w/ feedback

Challenge 1: Annotation bottleneck Challenge 2: Vast model space w/ feedback

Challenge 1: Annotation bottleneck Challenge 2: Vast model space w/ feedback

Challenge 1: Annotation bottleneck Challenge 2: Vast model space w/ feedback Challenge 3: Interpretability

Challenge 1: Annotation bottleneck Challenge 2: Vast model space w/ feedback Challenge 3: Interpretability

. .

Our Approach

Efficient & impactful collaborations between scientists & AI systems

Which animal where/when?

How many animals?

What behavior?

Are they healthy?

How does X affect Y?

Why does X affect Y?

. .

. .

Perception

 Why is it important to extract symbolically interpretable representations?

Data has meaningful structure

Challenges of extracting structure

Annotation Cost

Segalin et al., 2021

Ambiguity & Variability

Brady Weissbourd at MIT

Low SNR

Perception

- Why is it important to extract symbolically interpretable representations?
- Can we have a general-purpose foundation model for learning representations?

Task-Specific Approach

Foundation Model Approach

Foundation Model System

Localization

<sniff>

<walk>

Classification

- What is the black mouse's sensory environment?
- What will the black mouse do next?

....

Scientific Video Analysis

Foundation Model Approach

3

Stage 1: Video-Text Contrastive Video Encoder Text Contrastive Encoder Loss

Stage 1: Video-Text Contrastive Video Encoder Text Contrastive Encoder Loss

Stage 1: Video-Text Contrastive Stage 2: Masked Video Modeling Token-wise Distillation Video Video Encoder Encoder Decoder 2 Text Token Contrastive Shuffling Encoder Loss VideoPrism

VideoPrism for science

Gundavarapu

Jennifer Sun

Yue Zhao

Rachel Hornung

Florian Schroff

Ming-Hsuan David Ross Yang

Huisheng Wang

Hartwig Adam

Mikhail Sirotenko

Ting Liu

Boqing Gong David Hendon

Perception

- Why is it important to extract symbolically interpretable representations?
- Can we have a general-purpose foundation model for learning representations?
- Can they extract symbols from domain-specific data?

Foundation Model Approach

VideoPrism Architecture

Classification

N Classes

Retrieval

Localization

Video Foundation Models for Animal Behavior Analysis

Jennifer J. Sun*, Hao Zhou, Long Zhao, Liangzhe Yuan, Bryan Seybold, David Hendon, Florian Schroff, David A. Ross Hartwig Adam, Bo Hu[†], Ting Liu^{†*}

¹Google.

Perception & Reasoning

Why is it so hard to build effective scientific workflows?

Current Analysis Pipelines

Vast model space w/ feedback

YOLOv9 DETR

YOLOv10 SAM SAM2

YOLOv11

OWL-VIT Cotracker

OWLv2 GroundingSAM/

2026 & beyond...

Perception & Reasoning

- Why is it so hard to build effective scientific workflows?
- Instead of manual effort, can we have an AI agent discover an optimal workflow for us?

Program Synthesis

IF (distance between noses) < A AND
 (facing angle) < B</pre>

THEN investigation | F (acceleration of mouse 1) > C

ELSE investigation | F (distance from nose 1 to centroid 2) < D

Features defined by experts (or language models)

Superoptimization in Program Synthesis

Find "better" programs (e.g. better = faster)

Human code

Synthesized code

```
#include <iostream>
using namespace std;

int main() {
   int n;
   cin >> n;
   int sum = 0;
   for (int i = 1; i <= n; i++) {
      sum += i;
   }
   cout << sum << endl;
   return 0;
}</pre>
```



```
#include <iostream>
using namespace std;
int main() {
   int n;
   cin >> n;
   cout << n*(n+1)/2 << endl;
   return 0;
}</pre>
```

Can we superoptimize scientific analysis workflows?

Find "better" programs

(e.g. better = more accurate for analysis)

Human code

Synthesized of

Synthesized code

Can we superoptimize scientific analysis workflows?

Find "better" programs (e.g. better = more accurate for analysis)

Accurate single-molecule spot detection for image-based spatial

transcriptomics with weakly supervised deep learning

Emily Laubscher¹, Xuefei (Julie) Wang², Nitzan Razin², Tom Dougherty², Rosalind J. Xu^{3,4,5}, Lincoln Ombelets¹, Edward Pao², William Graf², Jeffrey R. Moffitt^{3,4,6}, Yisong Yue⁷, and David Van Valen²

Can we superoptimize scientific analysis workflows?

Find "better" programs (e.g. better = more accurate for analysis)

Human code

```
def min max normalize clipping (image):
    image_processed = []
    for img in images.raw:
        img = np.clip(img,
    a_min=np.percentile(img, 0.01),
    a_max=np.percentile(img, 99.9))
        min_val = np.min(img)
        max_val = np.max(img)
        normal_image = (img - min_val) /
    (max val - min val)
        image processed.append(normal_image)
    return np.array(image_processed)
```

ig

Expert function F1 Score: 0.841 Time: Weeks/Months

Synthesized code

```
def blurred laplacian of gaussian (images):
  processed images list = []
   for img array in images:
       img = np.copy(img array)
       img float32 = cv.normalize(img, None, 0, 1,
cv.NORM MINMAX).astype(np.float32)
       bilateral = cv.bilateralFilter(img float32, d=5,
sigmaColor=0.09, sigmaSpace=9)
       gauss = cv.GaussianBlur(bilateral, (3,3), 0)
       lap = cv.Laplacian(gauss, cv.CV 32F, ksize=3)
       abs lap = np.abs(lap)
       lap norm = cv.normalize(abs lap, None, 0, 1,
cv.NORM MINMAX).astype(np.float32)
       if img array.ndim == 3 and img array.shape[2] == 1:
           lap norm = lap norm[:, :, np.newaxis]
      processed images list.append(lap norm)
  return np.array(processed images list, dtype=np.float32)
```


Agent function F1 Score: 0.902 Time: 10 hours

Can we superoptimize scientific analysis workflows?

Find "better" programs
(e.g. better = more accurate for analysis)

Human code

```
def min max normalize clipping (image):
    image_processed = []
    for img in images.raw:
        img = np.clip(img,
    a_min=np.percentile(img, 0.01),
    a_max=np.percentile(img, 99.9))
        min_val = np.min(img)
        max_val = np.max(img)
        normal_image = (img - min_val) /
    (max val - min val)
        image processed.append(normal_image)
    return np.array(image_processed)
```


Expert function F1 Score: 0.841 Time: Weeks/Months Synthesized code

Agent function F1 Score: 0.902 Time: 10 hours

Agentic Superoptimization of Scientific Analysis Workflows

Julie Wang

Jonathan Chen

Yisong Yue

Scientific Analysis Workflow

Experiment Design Pilot Data Collection Exploratory Analysis Large-Scale Data Collection Production-Level Analysis

Medical Segmentation

Cell Segmentation

Single-molecule detection

Proof-of-concept Agent System

Proof-of-concept Agent System

Agentic Superoptimization Results

DeepCell Spots

Cellpose

MedSAM

This is the official repository for MedSAM: Segment Anything in Medical Images.

Perception & Reasoning

- Why is it so hard to build effective scientific workflows?
- Instead of manual effort, can we have an AI agent discover an optimal workflow for us?
- Can we accelerate the discovery process?

Discovery

Call to Action

Representative datasets & benchmarks

Benchmarking Animal Behavior (in the lab)

Call to Action

- Representative datasets & benchmarks
- Quantifying discovery

Accuracy Problem

Given a way to measure success, I want to get the number as high as possible

Discovery Problem

I want the model to lead to new & true insights (typically hard to measure)

Call to Action

- Representative datasets & benchmarks
- Quantifying discovery
- Collaborations across fields

biology

Adapted from our joint talk at *Grounding Cognition in Mechanistic Insight Conference*, Janelia, May 2025

Acknowledgements

Andrew Hein

Atharva Sehgal

Kilian Weinberger

Yoav Artzi

Yue

Kennedy

Swarat Chaudhuri

David J. Anderson

Kristin Branson

Julie Wang

Ling-Wei Kong

Abby Grassick

Pietro Perona

Tomomi Karigo

Cristina Segalin

Ting Weissbourd Liu

Alex Farhang

Sophia Stiles

Kai Horstmann

Google

Renata Ivanek

Linxi Zhao

Yijia Dai

Xinyu Yang