Presentations

Plenary session. “Inspiring AI: from health care to livestock farming”

 

Theatre Session A. “Ethics and Industry Adoption of AI in Animal Science: Addressing practical implications and challenges, including bias and data ownership, as well as industry implementations of AI”

 

Poster Session A.

A.01 Overcoming Data Limitations in Animal Genetics with GAN-Based Synthetic Genotypes S. Xie, B. Hanczar, J. Chiquet, E. Barrey

A.02 3D Visual Reconstruction-Based Method for Comprehensive Morphological Scoring of Dairy Cows Q. Yu, Q. Li, R. Gao, W. Ma, W. Qian

A.03 Application of artificial intelligence in livestock genomics: combining random forest and Boruta algorithm to identify informative single nucleotide polymorphisms across pig breeds G. Schiavo, S. Bovo, F. Bertolini, M. Bolner, A. Ribani, V. Taurisano, G. Galimberti, M. Gallo, L. Fontanesi

A.04 Exploring the animal molecular phenome with machine learning algorithms: mining the plasma metabolome to describe differences between breeds S. Bovo, M. Bolner, G. Schiavo, G. Galimberti, F. Bertolini, A. Ribani, M. Gallo, S. Dall’Olio, L. Fontanesi

A.05 Analysing environmental factors affecting dairy sheep milk production using machine learning algorithms on a large dataset E. G. Ramirez Cabrera, J. C. Angeles-Hernandez, A. Lizarazo-Chaparro, C. Palacios-Riocerezo, F. Ugalde-Ubaldo, J. Vera-Garfias, A. Villegas-Jiménez

A.06 Virtual Screening for Methane Emission Mitigation in Ruminants S. Zhu, G. Foggi, R. Peng, S. Riniker, M. Niu

A.07 Why we should reconsider our ethograms before attempting to automate behaviour analysis P. Savary, S. P. Brouwers

A.08 Associations between heat load, milk yield and cow behaviour on New Zealand dairy farms C. Reed, G. Chambers, J. Jago, P. Edwards, K. Verhoek

A.09 Beyond Respiration Chambers: A Field-Deployable Device for Continuous Methane Emission Measurement in Cattle R. Bica, N. Coetzee, H. Kwong

A.10 Reducing Annotation Effort with Multi-Layered Labels and a Pig Segmentation Model: A Case Study on Pig Behaviour and Identification P. J. De Temmerman, J. Defoort, L. Ingelbrecht, M. Aluwé, D. Maes, J. Maselyne

A.11 Harnessing novel non-invasive biomarkers for biosensor-based health monitoring in aquaculture: the IGNITION project C. Magalhaes, A. T. Gonçalves, T. Buha, S. Teixeira, B. Costas

A.12 Tech-Driven Transformation in Insect farming: The Future of Black Soldier Fly Larvae with Nasekomo and Fly Genetics M. Farasheva, M. Tejeda, C. Pincent, S. Mavrodieva, M. Bolard

A.13 Deep Learning for Automated Coccidiosis Detection in Poultry Gut Images D. Mezghiche, G. Tilli, A. Verhelle, B. Regmi, G. Antonissen, P. Claes

A.14 Milk yield prediction based on udder measurements in Pelibuey sheep using image processing and machine learning: Preliminary Results F. Castro-Espinoza, M. Espinosa-Lara, B. Andres-Serna, D. Contreras Caro Del Castillo, E. Hernandez-Rojas, J. C. Angeles-Hernandez

A.15 Use of machine learning algorithms to estimate the phenolic compounds and antioxidant activity of honey based on colour parameters A. K. Zaldivar-Ortega, J. C. Angeles-Hernandez, N. Esturau-Escofet, M. Jiménez Guarneros, A. M. Mier Y Teran Lugo, P. A. Vázquez-Landaverde, A. D. J. Cenobio Galindo

A.16 Machine Learning-Based Prediction of Milk Yield from Early-Life Data C. Ferrari, A. M. Vergani, C. Punturiero, A. Delledonne, M. G. Strillacci, A. Bagnato

 

Theatre Session B. “Emerging AI Applications in Precision Livestock Farming: Innovations in generative AI, digital twins, large language models (LLMs), big data, and robotics”

 

Poster Session B.

B.01 MCFBR-Net: A Multi-target Cow Feeding Behavior Recognition Model for Spatiotemporal Action Detection R. Gao, X. Li, Q. Li, Q. Yu, W. Ma

B.02 Prospective of Monitoring Infectious Disease Dynamics in Livestock Through an Integrated Approach of Continuous Sensor Data and Frequent Molecular Analysis B. Han, H. P. Doekes, R. De Jong, N. Stockhofe-Zurwieden

B.03 Association between sensor-based prepartum behaviour monitoring and early postpartum health in dairy cows: A case study E. Van Erp – Van Der Kooij, G. Hofstra, J. Roelofs

B.04 Exploring machine learning algorithms on activity and feeding behaviour for early estrus detection in dairy cows L. Krpalkova, J. Daly, G. Corkery, E. Broderick, J. Walsh

B.05 Transforming Dairy Farming in Romania: The Role of AI in Research and Precision Livestock Management A. S. Neculai-Valeanu, I. Porosnicu, C. Sanduleanu

B.06 AI-driven forecasting of heat stress effects on dairy production using TSMixer neural network M. Zanchi, C. La Porta, S. Zapperi, L. Ozella

B.07 Benchmarking predictive models: evaluating parametric, ensemble, and deep learning approaches for animal phenotype prediction from genotypes. E. Barrey, S. Xie, T. Tribout, R. Tonatto, F. Shokor, J. Zhu, F. Victor, J. Kwon, J. B. Léger, T. Mary-Huard, A. Ricard, B. Castro Dias Cuyabano, P. Croiseau, J. De Goer De Herve, D. Boichard, B. Hanczar, J. Chiquet

B.08 Computer Vision and Deep Learning for Remote Cattle Behavior Tracking on Pasture S. Benaissa, P. J. De Temmerman, S. Coussement, J. Vangeyte, J. Maselyne

B.09 A Decision-Making Tool Leveraging Open-Access Dataset: Unsupervised Learning for Individualized Benchmarking of Grigio Alpina Cattle Y. Gong, S. Heo, H. Hu, A. Liu, R. Negrini, C. Dadousis, N. Geifman, G. Rosa, V. Cabrera

B.10 The effects of climate change on thermal stress in cattle: global projections with high temporal resolution M. Neira, P. Georgiades, Y. Proestos, T. Economou, J. Araya, S. Malas, M. Omirou, D. Sparaggis, G. Hadjipavlou, J. Lelieveld

B.11 AI-Driven Approaches for Animal Welfare Monitoring in Agroforestry Systems J. Menne, R. Becker, J. Sonntag, A. Waldmann, A. C. Kreter, S. Wiedemann

B.12 Decisions-making model for microclimate control on the pig farms S. Karvan, M. Rozkot, E. Weisbauerova

B.13 Deep Learning in the bioinformatic modelling of functionally annotated microbial communities in aquaculture M. Sztuka, J. Szyda

B.14 AI Meets Tradition: Enhancing Italian Small Ruminant Biodiversity through Breed Identification A. Bionda, P. Crepaldi

 

Theatre Session C “Advancements in Data Collection and Integration: Exploring cuttingedge sensors, multi-sensor systems, data labelling, and tools driving animal science innovation”

 

Theatre Session D “Efficient AI Modeling and Data Processing: Tools, algorithms, and workflows for scalable AI solutions”

 

Theatre Session E “Advancing Digital Biomarkers with AI: Breakthroughs in animal identification, health and welfare monitoring, behavior analysis, and remote sensing technologies”

 

Theatre Session F “AI for Research and Farm Management: Leveraging AI to address research challenges in various animal science disciplines and improve informed decision-making”